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Figure 1: EclipseTouch is a headset-integrated sensing approach for touch input on ad hoc surfaces. The headset illuminators
create structured shadows in infrared (1/2/3/4), which our system uses to estimate touch contact and hover distance.

Abstract

The ability to detect touch events on uninstrumented, everyday
surfaces has been a long-standing goal for mixed reality systems.
Prior work has shown that virtual interfaces bound to physical
surfaces offer performance and ergonomic benefits over tapping
at interfaces floating in the air. A wide variety of approaches have
been previously developed, to which we contribute a new headset-
integrated technique called EclipseTouch. We use a combination of
a computer-triggered camera and one or more infrared emitters to
create structured shadows, from which we can accurately estimate
hover distance (mean error of 6.9 mm) and touch contact (98.0%
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accuracy). We discuss how our technique works across a range of
conditions, including surface material, interaction orientation, and
environmental lighting.
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1 Introduction

Mixed reality (XR/AR) headsets are becoming more widespread,
with increasing consumer excitement about forthcoming glasses-
like form factors. However, navigating user interfaces on these de-
vices generally requires users either to carry accessory controllers
everywhere they go, or be limited to poking and swiping at inter-
faces in the air.

A complementary, long-envisioned interaction option is to
ground virtual interfaces to real-world surfaces. One of the most
reliable ways to achieve such interactions is to instrument surfaces
with sensors. While robust, it is not feasible to do this for every
surface in the world. In a future with highly mobile wearers of
AR glasses, users may wish to temporarily and opportunistically
appropriate surfaces for touch interaction. For this reason, there
exists a significant body of work on ad hoc touch input without
instrumentation of the environment. In most cases, this requires
instrumenting the user instead, often with a special-purpose acces-
sory device. Even when such sensors could be plausibly integrated
into future smartwatches, it is most common for people to wear
watches on their non-dominant hand.

We believe the ideal sensing method should integrate directly
into the headset/glasses so that the user only needs to carry a single,
self-contained device (i.e., the glasses). Only a handful of methods,
which we discuss in Related Work, achieve this property. To this,
we add two additional practical constraints: robust operation 1)
across a wide variety of materials, including the user’s skin; and 2)
across environmental conditions (dark, bright, noisy, moving, etc.).

In this work, we present EclipseTouch, a new headset-integrated
technique for ad hoc touch sensing. Our system leverages the well-
known phenomena of shadow casting, utilized in prior touch sens-
ing work, but never demonstrated in a single worn device. More
specifically, EclipseTouch uses an infrared, egocentric headset cam-
era, which captures shadows cast by one or more synchronized
infrared illuminators on the headset (Figure 2). As the geometry
between the camera and illuminators are fixed, these shadows in-
herently capture a finger’s distance from a surface, including direct
contact (Figure 11). Importantly, our approach must first filter out
shadows cast by extraneous light sources in order to be robust. At
the core of our system is an optimized deep neural network that
has an inference time of 0.47 ms on an Apple M2 processor (used
in the Apple Vision Pro). The result is a method that works "out of
the box" and requires no pre-registration or calibration of the envi-
ronment, surface, or user. Our approach works across a wide array
of common surfaces, as well as lighting conditions, from bright to
pitch-black. EclipseTouch can also be readily integrated into sev-
eral popular XR headsets that already contain the requisite sensing
hardware and compute. Taken together, this set of capabilities sets
it apart from prior work, even those relying on similar phenomena.

2 Related Work

In this section, we review prior systems that have used techniques
relevant to EclipseTouch. We begin with systems that examined
the problem of ad hoc surface touch detection. For these, we start
with instrumented environments (the systems least similar to our
approach), progress to arm-worn mobile systems, and finally to
mobile systems that do not require arm instrumentation (most
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similar to our approach). We conclude this section with a review of
systems that specifically used shadows for touch tracking.

We emphasize that although active-illumination shadow tracking
has been used previously — including for the exact same use case as
this present work — our particular instantiation offers a favorable
mix of capabilities not demonstrated in any prior work (Table 1),
including:

o Uses hardware already present in modern headsets (cameras and
illuminators).

« Requires no instrumentation of the user’s arms (i.e., bare hands).

« Enables ad hoc input for commonplace surfaces, including the
user’s skin.

« Works across lighting conditions, including in complete darkness.

« Works "out of the box", requiring no pre-registration or calibration
of the surface, user, or environment.

o Offers high touch input accuracy (98.0% touch segmentation,
6.9 mm hover distance estimation mean error).

2.1 Detecting Touch with Instrumented
Environments

The most straightforward way to add touch tracking to a surface is
to instrument that surface directly. This is a well-explored area of
research that we will not cover in depth for brevity. Some of the most
common techniques have included placing microphones [16, 43, 46]
or LIDAR [30, 56] on the surface, or cameras above the surface. For
cameras, there have been many different optical approaches. For
example, thermal cameras have been used to detect changes in
heat left behind on the surface after touch [8, 23, 29, 31]. RGB
cameras have been used to capture images of the fingernail and its
color change during presses [2, 5, 34, 57] or even estimate fingertip
pressure [5, 10, 11]. Perhaps the most popular technique has been to
use fixed depth cameras operating above surfaces. After Benko and
Wilson’s works that pioneered this approach [3, 65], many other
iterations have improved performance using flood-fill algorithms
[68], combining infrared camera data [67], and applying machine
learning [7]. Other lesser used optical approaches include multi-
path interference from infrared depth cameras [49, 66], laser speckle
imaging [45], and imaging reflections of the finger in mirrors and
glossy surfaces [44, 70]. A major drawback of all these systems is
that they need to instrument every potential surface or environment
that the user may wish to interact with, which scales poorly. For
this reason, research has looked into instrumenting the user with
sensors to detect touches on ad-hoc surfaces, which we review next.

2.2 Detecting Touch with Finger/Hand/Arm-
Mounted Sensors

When a user touches a surface, their touching finger produces a
number of characteristic signals that could be used to detect touch
contact. For instance, IMUs attached to the fingernail can detect
spikes in deceleration that occur when a finger touches a surface
[41, 42, 52], but are cumbersome for users to wear and recharge.
More popular is an IMU ring form factor, which could be used to
detect touch [12, 13] and mouse-like 2D inputs [24, 33, 50]. Beyond
rings, researchers have also explored using IMUs placed on the
wrist (like a smartwatch) to detect tap events [37], however this
signal is less robust.
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System Sensor Mobile vs. Instrumented  Supports World Skin Demonstrated Estimates Touch
Name Hardware Stationary Hands/ Arms Multitouch Input Input in Darkness Hover Distance ~ Accuracy
TapLight [54] IR Camera, Structured Light Mobile No No Yes No No No 95.3%
OmniTouch [15] Depth Camera Mobile No Yes Yes Yes No No 96.5%
EgoPressure [76] RGB Camera Mobile No Yes Yes No No No nr.
MRTouch [69] Depth & IR Camera Mobile No No Yes No No No 96.5%
PressureVision++ [10] RGB Camera Stationary No Yes Yes No No No 89.3%
PlayAnywhere [64] IR Camera, IR LED Stationary No No Yes No No No nr.
Matsubara et al. [36] IR Camera, IR LEDs Stationary No No Yes No No No 96.1%
EgoTouch [38] RGB Camera Mobile No Yes No Yes No No 94.9%
Shadow Touch [32] RGB Camera, White LED Mobile Yes Yes Yes No No No 99.1%
EclipseTouch (Ours) IR Camera, IR LEDs Mobile No Yes Yes Yes Yes Yes (6.9 mm error) 98.0%

Table 1: Overview of key related work. Green is a positive attribute; red is negative. Refer to individual papers for study details.

Fingers also passively produce characteristic acoustic signals
when tapping or swiping on a surface, which travel through
the body and can be sensed with sensors mounted on the arm
[9,17, 27, 35]. Alternatively, touches can be sensed through changes
in reflections of actively emitted acoustic signals. For instance, Mu-
jibiya et al. [39], SoundTrak [71], and VersaTouch [51] emitted
ultrasonic waves through transducers placed on the arm and finger
to detect contact and pressure on the skin.

For detecting touches to the skin, one accurate approach that
researchers have explored is detecting changes to RF signals trans-
mitted through the user’s body. AtaTouch [26] detected subtle fin-
ger pinches by sensing changes in impedance between an antenna
and the user’s body. SkinTrack [75] used two devices, a signal-
emitting ring and a wristband receiver, with the body as an electri-
cal waveguide to sense finger touch on the skin. ActiTouch [74] and
ElectroRing [25] work in the same way, but move the transmitter
and receiver to more convenient form factors. Finally, Z-Ring [62]
used a single electrode ring that acted as a transceiver to sense
bio-impedance changes in the hand. While these approaches are
accurate, they are inherently limited to operation on conductive
objects, such as the human body (but not most walls or furniture).
A key limitation of all these prior systems is that they require in-
strumentation of the user’s finger, hand or arm, in addition to the
XR headset.

2.3 Detecting Touch without Finger/Hand/Arm-
Mounted Sensors

Rather than instrument a user’s hands with a device (likely special-
purpose, as even smartwatches are rarely worn on the dominant
hand), a more practical approach would be to have all neces-
sary hardware contained within the XR headset/glasses. Dominant
among these approaches is to use headset mounted cameras with
computer vision to detect touches on surfaces.

As most modern headsets come with built-in 3D hand and world
mesh tracking support, research has looked into inferring surface
touch using this data. However, the world mesh modern headsets
build is not currently accurate enough for touch detection purposes.
For this reason, TriPad [6] required users to calibrate and define
surfaces; hand tracking and dwells were used to instantiate touch
planes and touches were detected by measuring fingertip proximity
to the created plane. Richardson et al. [48] and Streli et al. [55]
focused on surface typing and used neural networks to analyze
patterns of hand motion to detect surface taps with high accuracy.

However, both these systems required pre-registered surfaces to
work, and could not detect stateful touches (including hover and
touch-ups).

Another approach that has seen the most success in the past is
using depth cameras. OmniTouch [15] and Imaginary Phone [14]
were early among these efforts and used depth cameras to track the
fingers and detect touches on the palm and other surfaces using a
combination of flood-filling and contour detection. MRTouch [69]
combined depth sensor data with infrared reflectivity data from a
Microsoft HoloLens to improve touch detection accuracy. The prob-
lem with depth cameras, even today, is noisy signal — the difference
between a finger touching vs. slightly hovering above a surface is
hard to distinguish. For this reason, OmniTouch required users to
lift fingers 20 mm above the surface to reliably separate hovering
from touch events. This is awkward, and not like how one scrolls
or types on their touchscreen devices. Moreover, depth cameras
have other drawbacks including higher power consumption, lower
resolution and lower framerates. Taplight [54] estimated fingertip
depth and surface contact by using remote vibrometry (laser speckle
sensing) obtained from a headset mounted laser and monochrome
camera. This approach, while accurate in some contexts, does not
function on many common surface materials, and can additionally
fail from user head motion and multiple inputting fingers.

Most relevant to EclipseTouch is recent work on detecting sur-
face contact using only headset cameras. This is challenging, as
the finger directly occludes the point of touch contact, and the
system must adapt to surface materials, lighting conditions, touch
types, and skin tones. PressureVision [11] and later PressureVi-
sion++ [10] described deep learning-based approaches to detecting
contact pressure of the hand to a surface, albeit with a fixed desk-
mounted camera and restricted lighting and surface conditions.
EgoPressure [76] extended this work to headset-mounted cameras
by collecting a large egocentric hand pressure estimation dataset,
but their system ran offline (not in real-time) and required ambient
illumination. In our prior work EgoTouch [38], we demonstrated a
system for detecting on-skin touch and force using only headset
RGB cameras, by looking at patterns of skin deformation, color
change and shadow convergence. Similar to EgoTouch, PalmPad
[18] could also detect touches to the skin with a headset-mounted
RGB camera, however it could not estimate force and only sup-
ported the palm. Both EgoTouch and PalmPad ran in real-time, but
only worked on the skin, required ambient illumination (i.e. did
not work in the dark), and were susceptible to false positives from
extraneous shadows in the environment.
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Figure 2: High-level overview of EclipseTouch’s experiment hardware and software pipeline.

The fundamental problem with all these prior approaches is that
they rely on existing sources of illumination. However, ambient
light is uncontrolled — it can be diffused, harsh, oblique, bright, mul-
ticolored, single/multi-point, and even non-existent (dark). With
EclipseTouch, we sought to overcome these limitations by control-
ling the shadows cast by the finger on the surface.

2.4 Detecting Touch using Shadows

To conclude our literature review, we now specifically discuss sys-
tems that have leveraged shadows to track user interactions, as this
most closely relates to our technical approach.

Starting with seminal work, we have Myron Krueger’s Video-
place [28], which utilized user silhouettes for interactivity (though
not true shadows). As far as we are aware, the earliest known work
to leverage "shadow shape analysis" at the fingers for touch input is
Andy Wilson’s PlayAnywhere [64]. This system used a camera and
illuminator that was fixed with respect to the input plane by virtue
of the system being placed on a table. This system laid the concep-
tual groundwork for using shadows for detecting touch, measuring
the decreasing distance between the shadow and fingertip.

More recent touch systems employing fixed cameras and fixed
illuminators include ShadowReaching [53], Iacolina et al. [22], and
Thomas [58]. Matsubara et al. [36] and Niikura et al. [40] used the
same system, which featured two fixed infrared illuminators and
a fixed camera capturing image pairs (one for each active illumi-
nator). More ambitious is to have only a fixed camera and rely on
existing natural or artificial light sources (i.e., no special illumi-
nators). Adajania et al. [1], Paper Piano [60], ShadowSense [21],
and Posner et al. [47] use this approach. However, with no control
of the positioning between the camera and light sources (one or
many, harsh or diffuse, bright or dim, etc.), input tends to be brittle,
working well in some cases and failing in others.

Most similar to EclipseTouch, is ShadowTouch [32]. Unlike the
above prior work, ShadowTouch is worn and mobile (i.e., not reliant
on fixed external infrastructure). Like EclipseTouch, the system used
an egocentric headset camera. Unlike EclipseTouch, ShadowTouch

requires a special-purpose LED wristband. As there is no synchro-
nization between the LED and camera, the LED is persistently lit,
which is prohibitively energy consumptive for a wearable. Addi-
tionally, the authors note that they do "not have a special design
to alleviate the ambient light interference" [32], an important part
of our pipeline. We also move beyond ShadowTouch in terms of
evaluation generalizability. In ShadowTouch’s study, only three
light-colored and matte surfaces are tested, only in a horizontal
setting, and in one typically-lit environment. In this work, we test
12 surface materials (Figure 6), both dark and light, and matte and
reflective. We also test vertical and horizontal orientations, and
across three lighting conditions (typical lighting, bright, and dark).
We note that our evaluation results show (Section 5) both systems
to be of comparable accuracy; in other words, we achieve the same
accuracy without the need for a special wearable.

3 Implementation

As a prototype platform, we instrumented a Meta Quest 3. In the
following subsections, we step through the various hardware and
software components that make up EclipseTouch.

3.1 Camera

We affixed a HT-SUA33GM-T1V-C USB 3.0 camera [61] to the bot-
tom left of our prototype headset (Figure 2). This global shutter
camera has a modest resolution of 640x480 pixels, but is sufficient
for our needs (i.e., our shadows are large and textureless, not requir-
ing high detail). We fitted the camera with an 850 nm bandpass filter,
matching the wavelength of our LED illuminators (discussed next).
Even with this filter, other light sources can cast visible shadows
at 850 nm, most notably the sun, as well as incandescent and halo-
gen lights. To account for this, our pipeline includes an extraneous
shadow suppression process, described in Section 3.5. As we rely
on only a narrow frequency band of light, we purposely selected
a monochrome camera with a wideband CMOS sensor (with no
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tubes, CFL, LED, sun), and illumination conditions (diffuse, floodlight, point source). Note that shadows visible in visible light
(RGB Reference) may be invisible in infrared and vice-versa. Figure 4 provides a step-by-step example of shadow suppression.

Bayer pattern, which would preclude imaging infrared light). Fi-
nally, this camera features an external hardware trigger, which we
use to synchronize with our LED illuminators. The camera streams
video over USB to a laptop, where our software runs. The maximum
framerate of the camera is 791 FPS, though we operate it about half
this speed to increase exposure time.

3.2 Illumination Geometry

As already discussed, EclipseTouch relies on active illumination
to create structured shadows. We use LEDs with a wavelength of
850 nm (infrared), that are safe and invisible to humans, even in
darkness. The LEDs are rated at 3 W, but we drive themat 1.1 W as a
power conservation measure. Importantly, our prototype was built
to serve as a vehicle for investigation. As such, we over-provisioned
our headset with LEDs in each of the four corners. For the corner
with the camera, the LED is placed directly above the camera. This
arrangement can be seen in Figure 2. As we will evaluate and discuss
later, some illuminator locations are more valuable than others, and
so a commercial implementation would use fewer illuminators,
potentially just one (as can be seen with our final prototype in
Figure 14).

3.3 Driver Board

We use a Teensy 3.2 microcontroller and custom MOSFET LED
driver board to precisely control the timing of our LED illuminators
and camera frames (microsecond precision). Our Teensy firmware
uses the following five-step LED "firing sequence": No LEDs on,
LED 1 on, LED 2 on, LED 3 on, and LED 4 on. Each step in the
sequence has a duration of 2.5 ms, and at each step the camera
is triggered using its external pinouts. The firing sequence loops
continuously, producing a 400 FPS raw video stream.

Our camera uses an exposure time of 2.4 ms. We note that this
is a comparatively short exposure time for a camera with a small
sensor (1/5.6"), but this is not an issue for EclipseTouch because
we are actively illuminating the scene. Furthermore, human skin is
reflective in infrared, and the user’s hands are never more than 70
cm away from the headset. As can be seen in Figures 3 and 6, the
hand is readily seen, and the shadows cast are crisp and dark.

3.4 Video Stream

On our laptop receiving the 400 FPS camera stream, we read five
frames at a time (i.e., a complete firing sequence), and composite this
data into a new, singular frame containing multiple illumination
sources: five 640x480 images side-by-side in a row. Thus, this new
composited stream has a framerate of 80 FPS. The time between the
start of the first frame (no illumination) and the end of the last frame
(LED 4 on) is approximately 12.5 ms. This short duration means
that even when the hands are in motion, the image can be stacked
for image processing as though they were taken at essentially the
same moment in time.

3.5 Extraneous Shadow Suppression

In addition to our infrared LEDs, other light sources with 850 nm
wavelengths will cast finger shadows. Notable light sources include
the sun, as well as some artificial lights, including incandescent and
halogen bulbs (see example shadows in Figure 3). These shadows
can generate false events, and so it is desirable to filter them out.

Importantly, light intensity is additive on image sensors (i.e.,
each CMOS pixel measures accumulated light, and if two or more
light sources are contributing photons to this pixel, it will simply
be the sum of intensities). We can use this property to great effect
for removing unwanted shadows. Specifically, we can take our "no
LEDs on" subframe, which captures any shadows generated from
extraneous light sources, and simply subtract this from our other
four subframes. This has the effect of removing the contribution
of ambient light on those subframes, leaving only the illumination
from that specific subframe’s LED. An illustration of this process is
shown in Figure 4, with example outputs across various environ-
mental conditions seen in Figure 3.

3.6 Finger Tracking

With extraneous shadows removed, we next move to track the
hands in front of the user. In an integrated system, this information
would already be available from the hand tracking provided by the
headset software. However, as we are using our own camera, we
cannot simply use the Quest 3’s hand tracking result, and instead
must compute our own. For this, we utilize our LED 1 subframe,
which provides an illuminated view of the hand with minimal
shadows (as LED 1 is almost directly inline with the camera). We
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run Google’s MediaPipe hand tracker [72], which provides 21 2.5D
hand keypoints, though we only use the five fingertip points. We
create 64x64 pixel patches centered on each fingertip. We use the
wrist and Metacarpophalangeal (MCP) hand joints to normalize
the size of the fingers (i.e., scale, irrespective of distance from the
camera) scale, and then the MCP and Proximal interphalangeal
(PIP) finger joints to normalize the rotation (so that all fingers
are pointing upwards in the patch). These finger patches are then
passed to our ML model, described next.

3.7 Machine Learning

Our deep learning model takes in as input a finger patch and a finger
ID and jointly predicts touch state and hover distance. Our model
is a hybrid vision transformer, built on top of the FastViT T8 [59]
backbone. Finger patches contain contain N channels (N € 1,2, 3, 4),
one for each of the illuminator subframes. Finger patches are first
passed through the backbone to produce image embeddings of size
768. These embeddings are then concatenated with a 5 dimensional
one-hot encoded vector of the finger ID (thumb=1, pinky=5) to
produce an embedding of size 773. Finally, this embedding is passed
through a multi-layer perceptron (2 layers, hidden dimension 128,

Ambient Subframe

Input LED Subframe

Shadow from LED

\ y

Ambient Shadows Ambient Shadows

Shadow from LED

\

~

norm(B-A)
Differenced Subframe Output LED Subframe

Figure 4: Overview of our shadow suppression process. Our
ambient subframe (A) captures shadows cast by ambient light
sources. When an illuminator is on (LED 3 in this example),
we cast a new additional shadow into the scene (B). Note this
shadow can be weaker than ambient shadows, as is the case in
this example (see also Figure 3). We then subtract the ambient
frame from the LED-illuminated subframe (B-A). Having
now subtracted ambient light, the frame becomes darker, and
represents light only cast by the headset LED. To compensate
for variable scene brightness (e.g., varying surface albedo and
hand distance) we perform a final normalization — norm(B-A)
— which accentuates the shadow. Note only a single shadow
remains, the one cast by the headset LED.
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GeLU [20] activations) that encodes the scaled distance of the fin-
ger to the surface. Touch state is obtained by sigmoid activating
and thresholding this value. We smooth touch and hover distance
predictions with a mean filter over the 30 most recent frames.

3.8 Model Training Protocol

In our subsequent user study, we employ a leave-one-participant-
out cross validation scheme to train and evaluate our models. Our
models were trained using the PyTorch and PyTorch Lightning
deep learning frameworks. We initialized the FastViT backbone
with ImageNet pretrained weights. We first trained the model to
estimate touch state (by minimizing binary cross-entropy loss) and
later fine-tuned the model to encode distance in the final logit (by
minimizing the sum of mean absolute error and mean squared error).
Models were trained for 10 epochs using the Adam optimizer, a
batch size of 128 and a learning rate of 0.000003, which took about
two hours on an NVIDIA 2080 Ti GPU.

3.9 Compute and Power Consumption

We carefully designed our model to be able to run as a lightweight
background process, concurrent with numerous other models that
already run on XR headsets (hand/body tracking, SLAM, etc). After
training, we re-parameterize the model [59] to an equivalent one
with fewer parameters (total 3.3M parameters). On an M2 Macbook
Air — with similar hardware to the Apple Vision Pro — our model
has an inference time of 0.47 ms. This means that our model can
potentially run at ~2000 FPS, or run at e.g., 60 FPS consuming a
small fraction of the headset’s processing power.

As noted previously, our infrared LED illuminators consume
1.1 W when active. Only one LED is active at a time, and no LEDs
are active 1/5th of the time, yielding a mean power draw of 0.9 W
for illumination. Our microcontroller and LED driver board con-
sumes 0.3 W. Our camera, running at 400 FPS, draws 0.8 W. As one
reference point, the Meta Quest 3 draws ~8.6 W of power during
use (giving its 18.9 Wh battery a stated 2.2 hours of runtime).

3.10 Compatibility with Existing Headsets

We note that several popular XR headsets already contain the requi-
site hardware to enable EclipseTouch. For example, the Apple Vision

OInfrared llluminators © Monochrome Cameras

Figure 5: XR headsets on the market already include inte-
grated infrared illuminators and infrared-sensitive cameras,
suggesting EclipseTouch could be enabled via a software up-
date. Additionally, we note that future AR glasses could also
incorporate a single camera and LED in opposite corners of
the frame, much like Ray-Ban Meta AI Glasses do today.
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Pro contains two infrared illuminators and six monochromatic cam-
eras sensitive to infrared light (Figure 5, left). The low-cost Meta
Quest 3S contains two infrared illuminators and two monochro-
matic cameras (Figure 5, right). In both cases, the illuminators are
used to boost hand tracking performance in low-light conditions
[19]. However, their arrangement is also perfect for EclipseTouch—
two infrared illuminators offset from one or more infrared cameras
(more discussion in Section 5.1). Thus, it is likely that EclipseTouch
could be enabled with a software update (at present, neither headset
provides ad hoc surface touch segmentation, other than in a rough
way using the native hand tracking).

4 Data Collection Protocol

To collect data to train and evaluate EclipseTouch, we recruited
10 participants (4 female, 6 male, all right-handed) for a one-hour
user study. Participants were compensated $20 for their time. After
completing consent paperwork, participants were fitted with our
EclipseTouch-instrumented Quest 3, which streamed our 80 FPS
video composite to a local desktop via USB where it was saved.
The study was conducted in a windowless room with controlled
lighting. We measured lux, reported later, using a Sper Scientific
840022 Light Meter. During the study, participants stood in front
of a standing desk or a wall. Unlike prior work, we did not restrict
participants head motion or distance to surfaces.

We designed our study to capture a variety of conditions such
that we could later analyze system performance across different ma-
terials (n=12, of varying albedo, sheen, patterns and translucency;
Figure 6), surface orientations (horizontal and vertical), and lighting
conditions (bright, typical, and dark; Figure 7). It was not possible
to fully cross these conditions due to combinatorial explosion, and
so we designed blocks of sessions to collect data, varying a single
experimental factor at time.

All of the individual sessions followed the same basic data collec-
tion procedure. First, participants were instructed to continuously
touch and drag on a presented surface with their index finger, during
which time 30 seconds of data was recorded. This was immediately
followed by a second session capturing 30 seconds of data in which
participants were asked to hover their finger above the surface and
to perform repeated in-air taps. These trials provided positive and
negative examples to train our machine learning model.

To collect data across a variety of surfaces, we curated a set of
11 diverse materials — including wood, plastic, metal, fabric, and

painted/printed surfaces — seen in Figure 6 (along with a summary
of their properties). These material samples were all cut down to
60%40 cm so as to be easily swapped and organized during the
study. Both touch and hover sessions of data were collected for all
11 materials, in a random presentation order, in a horizontal orien-
tation (placed on a desk), and in typical home lighting (measured at
127 lux, with typical home illumination around 100-200 lux [63]).
Next, we collected data in two additional lighting conditions:
bright (1633 lux) and dark (0.005 lux). For reference, typical TV
studio lighting is around 1000 lux and a quarter moon on a cloudless
night is 0.01 lux [63]. For this study block, we reduced our material
set down to two: white wall and patterned wallpaper. The former
was a representative plain and light-colored material, and the latter
served as a more challenging surface, being darker, glossy, and
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Figure 7: We tested three lighting conditions in our study:
bright, typical, and dark. For reference only, we show the
scene as it appears to a standard RGB camera along the top
row. The bottom row shows the LED 3 illuminated subframe
at the end of our pipeline (not shown are LED 1, 2 and 4
subframes, but the results are equivalent). In short, Eclipse-
Touch is reasonably agnostic to ambient lighting condition
as it provides it own illumination. Note also how shadows
cast from ambient sources are not visible in the processed
frame due to shadow suppression.
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Figure 8: Results across illuminator combinations. A colored dot indicates that the corresponding illuminator is active in that
channel. The best combination (LED 3 & LED 4, operating in separate channels) is marked with a star.

patterned. For these two materials, we collected two additional
sessions of data in each lighting condition and in a horizontal
orientation. Note in the previous block of sessions, we already
captured data for these two materials under typical lighting (127
lux). For our three lighting conditions, we provide reference visible-
light photos and infrared-illuminated subframes in Figure 7. We
also collected data for surfaces in a vertical orientation. For this, we
use our same pared-down material set — white wall and patterned
wallpaper — and our typical home lighting condition.

Finally, the user’s skin is a special, high-value input surface with
unique optical properties (most notably subsurface scattering, cre-
ating diffuse shadows). In order to evaluate EclipseTouch’s ability
to extend to skin input (our 12th material), we collected eight ses-
sions of data on the palm: two sessions each with the hand held
horizontal in our bright/typical/dark lighting conditions, and two
sessions with the hand held vertically in typical lighting.

In total, each participant completed 42 sessions of data collection.
With each session producing 30 seconds of data and a system fram-
erate of 80 Hz, multiplied by 10 participants, this process yielded
1,008,000 individual frames for training and analysis.

5 Results and Discussion

Our system prototype and study procedure was purposely designed
to enable investigation of several important factors. First and fore-
most, we ran an ablation study to identify the most promising
illuminator geometry, balancing accuracy with practicality. All sub-
sequent results use this arrangement. Input to the skin is broken
out as a special discussion. We conclude the section with two sup-
plemental studies: hover distance estimation and multitouch. For
touch prediction, we report classification accuracy and for hover
distance estimation, we report mean absolute error in millimeters.
Other than our illumination geometry ablation study (the next sec-
tion), all results reported in this section are trained and tested with
leave-one-participant-out cross validation, with no user or surface
calibration. In all experiments, we always test on unseen users.

Across all materials (including skin), in both orientations and all
three lighting conditions, EclipseTouch achieves an overall mean
accuracy of 98.0% (SD=0.3%) using its best-performing LED 3 & 4
illumination geometry.

5.1 Across Illumination Geometries

First, we evaluate the performance of EclipseTouch under differ-
ent illuminator configurations. Our prototype hardware has four
illuminators (Figure 2), which leads to 15 possible combinations
(2* - 1) for illuminator placement on the headset. To enable trig-
gerless operation and higher framerates, illuminators could also be
turned on in groups of two, three, or four, and so we additionally
ablate these 11 extra combinations. Due to the additive property of
light transport, we can simulate these combinations by averaging
the subframes from each of the LEDs. Figure 8 shows all the 26
illuminator combinations we tested. Prior to training each model,
we modify the model architecture to accept images with different
numbers of channels, by modifying the input channels of the first
convolution layer of the backbone. We used six participants’ data
for training, and the remaining four participants’ data for testing.

Results from this ablation study are shown in Figure 8. Focusing
first on the Single Channel, Single Illuminator results, it is clear
that LED illuminators 3 and 4 yield the best results (96.7% and 96.2%
accuracy). Indeed, there is a clear pattern in performance relating
to illuminator-camera distance. Figure 2 shows shadows formed by
each of these illuminators. We note that illuminators 3 and 4 are
the furthest offset from the camera and produce the most promi-
nent shadows of the touching finger. Next farthest from the camera
is illuminator 2, which produces notably smaller shadows of the
touching finger. Finally illuminator 1, which is in-line with the cam-
era, produces almost no shadow, leading to the worst performance
of all the illuminators (89.0%).

Moving on to Single Channel, Multiple Illuminator configura-
tions, where multiple illuminators are on at the same time, we
observe that the best combinations are LED 3 + 4 (94.7%), as well as
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LED 2 + 4 (also 94.7%). While this performance is high, we observe
that all combinations in this category consistently perform worse
than their individual channel counterparts, as well as the best per-
forming single-illuminator configurations. Simultaneously turning
on multiple illuminators had no performance benefit over using
one or more LEDs at optimal locations.

Finally, looking at Multiple Channel, Multiple llluminator results,
we find the best-performing combination is LED 3 & 4 at 97.9%, fol-
lowed closely by LED 2, 3 & 4 at 97.6%. This makes sense, especially
considering the fact that LED illuminators 3 and 4 already achieved
high accuracies on their own.

Notably, the accuracy with even just one LED at an optimal loca-
tion is similar to the best performing combination (96.7% for LED
3 alone vs. 97.9% for LEDs 3 & 4). This is promising, as existing
headsets already include a pair of illuminators offset from inte-
grated cameras (see Figure 5 and Section 3.10), potentially allowing
EclipseTouch to be enabled through a software update. We also cre-
ated a final prototype for demo purposes, seen in Figure 14, which
features a single illuminator based on these results. For all subse-
quent study results, we report performance on this best-performing,
multi-channel illuminator configuration: LED 3 & 4.

5.2 Across Surface Materials

A key component of our study was to evaluate the performance of
EclipseTouch on a variety of everyday materials (see Figure 6 for the
11 non-skin materials that we tested). Importantly, these materials
had a wide range of properties, including varying albedo, sheen,
patterns and translucency. Results from this evaluation are shown
in Figure 9. Across all materials tested, performance remains high,
averaging 98.6% accuracy. This ranges from 96.6% for the yellow
acrylic material to 99.8% for the green fabric material. Note that 9
out of 11 materials tested have accuracies above 98.0%, indicating
strong generalization of EclipseTouch across surface materials.

Performance remains similar across albedo types, with light
materials averaging 98.2% (SD=1.3%), medium materials averaging
99.0% (SD=0.7%), and dark materials averaging 98.4% (SD=1.4%)
accuracy. This is encouraging, since darker materials often pose a
challenge to other vision-based systems.
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Figure 9: Touch classification accuracy vs. surface material.
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Similarly, performance remains comparable across sheen types,
with matte materials averaging 98.6% (SD=1.1%), satin materials
averaging 98.7% (SD=0.9%), and glossy materials averaging 98.4%
(SD=1.6%). Note that while we do include glossy materials, none of
our materials were fully reflective, like glass. These materials do
not produce shadows and thus cannot be supported.

Also encouraging is that performance remains high with ma-
terials with busy patterns; over 99.0% accuracy for our patterned
wallpaper, wood table, and ceramic tile surfaces.

The worst performing material was the yellow acrylic, which
had a mean accuracy of 96.6%. This material is semi-translucent,
and produces shadows with softer edges as compared to the other
materials in our study, potentially reducing performance. Opaque
materials averaged 98.8% accuracy (SD=0.9%).

5.3 Across Lighting Conditions

Next, we analyze performance across lighting conditions. Figure 7
shows the three lighting conditions we tested in this study, ranging
from dark (0.005 lux) to bright (1633 lux) lighting. Results for the
three materials we studied across lighting conditions can be seen
in Figure 10. On average, touch accuracies were 98.1% (SD=1.5%)
for the bright condition, 97.3% (SD=2.3%) for the typical condition,
and 99.0% (SD=0.8%) for the dark condition. Overall, performance
remains similar across lighting conditions, with a slight increase in
performance in the darkest lighting condition. This is an encourag-
ing result, since most prior work either did not test or did not work
well across such a wide range of lighting conditions.

5.4 Across Surface Orientations

Touch performance across the two orientations we tested can be
seen in Figure 10. On average, performance was slightly better for
the horizontal condition (97.3% accuracy, SD=2.3%) vs. the vertical
condition (95.8% accuracy, SD=2.4%). Notably, the patterned wall-
paper material had a sharp decrease in performance from 99.1% to
93.5% accuracy. We note that in our user study, participants typi-
cally had their hand closer to the headset in the vertical condition
vs. the horizontal condition, which could have contributed to this
decrease in performance. Furthermore, shadows of the touching
finger look different in the vertical condition as compared to the
horizontal condition, and since the majority of our training data
was collected in the horizontal orientation, we hypothesize our
models may be slightly biased towards this orientation.
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Figure 10: Touch classification accuracy vs. lighting condition
(left) and surface orientation (right).
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Figure 11: Example 250 ms sequence of an index finger de-
scending to tap a surface. Note how the shadow evolves over
time (illuminated by LED 3), converging towards the finger,
and essentially disappearing upon contact. Our model uses
this visual information to predict hover distance.
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5.5 On-Skin Touch Detection

An important surface material to study for touch input is the user’s
skin, as it is always available for input on the go. However, skin
has unique properties that set it apart from the other materials we
tested. It has varying albedo, surface texture, and some translucency
(leading to subsurface scattering of light). It is also deformable and
non-planar. For this reason, we separately trained a model for skin
input. We envision this model being used when the XR headset’s
existing hand tracking detects probable hand-to-skin input.

On-skin touch detection results are shown in Figures 9 and 10.
Compared to other materials, detection accuracy was slightly lower,
at 94.7% accuracy (SD=2.3%). We note, however, that this perfor-
mance is still competitive with prior work [15, 38]. Across lighting
conditions, performance also remains high, with a noticeable jump
in performance in the dark (99.2% accuracy). We note that prior
vision-based on-skin touch systems, such as our own EgoTouch
[38], has essentially 0% accuracy in the dark. Across orientations,
performance is higher in the vertical orientation (98.3%) vs. the
horizontal orientation (94.7%).

5.6 Supplemental Study: Hover Distance

As a user moves their finger towards a surface, the shadow cast
by that finger moves and the distance between the fingertip and
the tip of the shadow changes proportionally (Figure 11). For this
reason, we hypothesized that it would be possible to train a model
to estimate finger hover distance above a surface. To train and eval-
uate this model, we ran a small supplemental user study with 5
participants (2 male, 3 female). Participants filled out consent paper-
work and were fitted with the EclipseTouch prototype. Participants
stood in front of a table in a typically lit room. To collect ground
truth distance of the finger from the surface, we affixed a HD USB
webcam to the side of the table, so as to track the participant’s
touching finger from the side. At the start of the study, the experi-
menter calibrated the pixel displacements of the user’s hand in the
webcam view to real world units (mm). Then, participants were
asked to lift their index finger up and down above a certain location
on the surface. Participants were instructed to only lift their finger
vertically, so as to accurately track their fingertip’s ground truth
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Figure 12: Left: Predicted vs. true hover distance. Overall,
EclipseTouch is fairly linear and accurate, up to about 10 cm
(mean error of 6.9 mm). Right: Mean absolute hover distance
error vs. true distance — note the slight upward trend in error.

distance from the surface. We collected three sessions lasting 60
seconds each, for a total of 72,000 frames at 80 FPS.

To train this model, we simply fine-tuned our existing Eclipse-
Touch model to directly estimate hover distance in the output touch
classification logit (before activation). The main motivation for this
design was that hover distance and touch classification confidence
are highly correlated. Furthermore, this allowed us to have a sin-
gle unified model that estimated both hover distance and touch
state simultaneously. All models were trained with a leave-one-
participant-out cross validation scheme.

Results from this supplemental study can be seen in Figure 12. In
our hover distance region of interest, below 10 cm, our model had a
mean absolute error of 6.9 mm. For ground truth distances less than
1 cm away from the surface, our model had a mean absolute error
of 2.5 mm. Furthermore, we note that error increases slightly as
distance from the surface increases (Figure 12). Example predictions
of this model as a user touches a surface can be seen in Figure 11.

5.7 Supplemental Study: Multitouch

To evaluate the performance of EclipseTouch on multiple fingers, we
ran a small supplemental study (in tandem with the hover distance
estimation study). For this study, we collected four types of sessions,
all with the white wall material in typical lighting. First, participants
were asked to touch and drag across the surface with all their fingers
simultaneously. Next, participants were asked to hover close to the

—_— 100 I I I

S 989 989 934 971_0

5 % 91[.0
g

5 80

(3}

Q

< 70

Thumb Index Middle Ring Pinky

Figure 13: Results from our multitouch supplementary study,
broken out by inputting finger.
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Figure 14: Based on our evaluation results, we created a final
prototype featuring a single infrared emitter and camera.

surfaces and to perform in-air taps with all their fingers. Third,
participants were asked to perform a pinch and zoom motion with
their index and thumb fingers while touching the surface. Finally,
participants were asked to perform the pinch and zoom motion in
the air while hovering close to the surface. Each session lasted 30
seconds, and we collected three rounds per session, for a total of
144,000 frames at 80 FPS. We then fine-tuned our models with this
data. Similar to before, we employed a leave-one-participant-out
cross validation scheme to train our models.

Results from this study are shown in Figure 13. Similar to [32],
we observe that the model performs similarly across the thumb,
index and middle fingers (98.7% accuracy, SD=0.3%). Performance
drops slightly for the ring finger (97%) and drops further for the
pinky finger (91%), as they are sometimes not visible to the camera.

6 Limitations & Future Work

While EclipseTouch represents a useful and practical increment
over prior work, there is still room for improvement to achieve
touchscreen-like performance. Foremost, similar to other vision-
based approaches, EclipseTouch needs line-of-sight to the touching
finger to function. On modern headsets, this issue has been par-
tially addressed by incorporating multiple cameras on the headset,
expanding the field of view outside that of the users.

We also note that EclipseTouch does not work across all surface
materials. In particular, highly-reflective and transparent materials
will fail, such as mirrors and glass (as no shadows are visible).
In future work, the reflection of the finger on the surface itself
could be used to estimate touch contact [44]. Apart from this, we
also observed that very dark materials (in infrared) did not cast
shadows, nor did highly 3D-textured surfaces (e.g., piled carpets,
fur, fluffy clothing). Across all materials tested in our study, the
two worst-performing were User Skin and Yellow Acrylic (the only
two semi-translucent materials we tested). One hypothesis for this
reduced performance is that subsurface scattering interferes with
cast shadows. In the future, EclipseTouch could use its cameras and
computer vision to identify unsuitable surfaces, and steer users to
utilize compatible ones.

The power draw of EclipseTouch could be an obstacle to adoption
in commercial systems (read more about the power consumption
of our prototype in Section 3.9). In general, active illumination
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is power expensive. In systems using light emitters, such as the
LIDAR and TrueDepth sensors in Apple’s iPhones, the sensor is
only turned on when needed. For example, the auto-unlock feature
is first triggered by a motion event detected by a lower-power IMU,
before turning on the more power-expensive TrueDepth sensor
for Face ID. Even when on, the duty cycle is kept very low. A
similar approach could be used for EclipseTouch. Contemporary
XR headsets already build a model of the environment and track
the user’s hands for input. This data could be used to activate
EclipseTouch opportunistically, when the hands are closer than
e.g., 30 cm to a surface. When active, the infrared LEDs could be
strobed for very short durations (our cameras are already externally
triggered, so synchronization is not an issue), further reducing
power consumption.

Another condition where EclipseTouch does not presently func-
tion is in direct sunlight. As noted in our study, our bright lighting
condition was 1633 lux (exceeding that of typical TV studio lighting
at 1000 lux [63]). It was certainly bright compared to a typical office,
but not bright compared to the direct Sun, which can be 100,000 lux
[63]. At this level of illumination, our 1.1 W LEDs cannot compete,
and the shadows they cast simply disappear into noise. Other active
illumination sensing methods have employed various strategies to
combat this, including modulating and polarizing light, as well as
using very narrow bandpass optical filters. This is how, e.g., depth
sensors such as Microsoft’s Kinect and Apple’s iPhone LIDAR can
work in outdoor scenes.

There are also opportunities to further generalize EclipseTouch
to new surfaces. For instance, we are exploring how game engines
could be used to generate synthetic data, since the phenomenon
of shadow casting is well developed for games. Alternatively, we
could also use new foundation models for relighting [73] and hand
generation [4] to augment and create new synthetic data on a
variety of materials. Future work could also explore touch detection
on irregular surfaces, beyond the palm, as well as fusing multiple
vision modalities (e.g. RGB & IR).

7 Conclusion

We have presented EclipseTouch, a new headset-only system for
detecting touches on everyday surfaces, including the user’s skin,
using worn infrared shadow casting. Moving beyond prior work,
our results show that this approach is quite accurate (98.0% touch
accuracy, 6.9 mm hover distance error), and works across a wide
range of surface materials, lighting conditions and orientations,
while running efficiently and with low latency. Our ablation studies
reveal optimal illuminator arrangement geometries and suggest that
EclipseTouch could be implemented in existing headsets through a
software update.
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