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Fig. 1. Contextra is a wrist-worn sensing system that tries to determine a user’s context (left) by fusing
data from multiple low-resolution IR cameras, EMG electrodes, and an IMU to detect when a users grasps
an object (middle). Once grasp is detected, a variety of downstream interactions can be enabled such as
identifying held objects and habit tracking (right).

Knowing when a user picks up an object plays a vital role in many context-aware applications. For example,
tracking water consumption, counting calories consumed, or reminding you to bring your keys are all context-
centered scenarios involving picking up objects. In this project, we propose Contextra, a wrist-worn system
that uses sensor fusion to recognize when a user grasps objects. Sensor fusion allows all parts of the grasp to
be sensed in ways single channels cannot alone. In our wristband, we fuse EMG and IMU data with video
captured from three low-power IR cameras. These cameras maintain privacy by using an active-illumination
technique to only capture features close to the sensors. Beyond grasps alone, we see Contextra as playing a
foundational role in providing continuous awareness of context triggers to extend the functionality of existing
Al devices that cannot run continuously due to power and privacy concerns.
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1 Introduction

Many people carry multiple wearable devices with them wherever they go. Yet despite their
omnipresence, these devices still know little information about the settings users are in. As an
example, a smartphone may be able to infer that a user is making dinner if they have opened a
cooking app and are looking through a recipe, but very rarely is this done automatically. If obtained,
contextual information, such as if a user is making a meal, can be used to provide better adaptive
and context-specific interfaces and experiences. In this work, we explore how a device on the wrist
is uniquely suited to sensing information that can be used to inform context.

Smartwatches are the most commonly worn all-day wearable devices; many users are already
acclimated to wearing them. Smartwatches are also worn in close proximity to the hand, the
primary body part people use to interact with the world. As a result, they are well-positioned to
sense signals from interactions that are too noisy and too difficult to detect from other parts of the
body. Past HCI research around wearable sensing on the wrist has actively explored recognizing
general context by means of intermediate problems such as pose tracking and activity recognition.
In contrast, there has been less exploration of directly recognizing specific moments of micro
context, like picking up an object, when just-in-time feedback is most valuable.

In this project, we propose Contextra, a system that uses sensor fusion on the wrist to recognize
when a user picks up an object. We reference Wimmer’s and Zaiti et al’s [44, 48, 52] claim that
object grasps are a foundational component of inferring when a user is in an interesting context
that we might want to recognize and use it as the basis for this work’s motivation. An "interesting"
context relates to the idea that for some objects, if a user picks them up, it may be useful to the
user to provide additional information or guidance to help them with their task. Examples include
tracking caffeine consumed when picking up a coffee cup or providing explanation on how to use a
tool. Wimmer’s framework of grasp interactions [47] defines three stages of a grasp: capturing the
grasp, identifying it, and interpreting it. In this work we focus on a technical, wearable solution for
the first two stages. For the second stage, we focus on identifying whether a grasp occurred or not
rather than recognizing the type of grasp from a known grasp signature. For the third stage, we
discuss potential applications of Contextra in grasp interpretation, but leave this to future work.

Object grasps are complex actions, made up of multiple stages. Through experimentation we
found certain types of sensors were better suited to detecting parts of a grasp than others. Past
work has also shown the disadvantages of individual sensing modalities [28, 30, 31, 43]. Thus, using
these factors as our motivation, we designed a system that uses a fusion of sensing approaches. On
the wristband, we use optical, electromyography (EMG), and accelerometer sensors, each to detect
different stages of the grasp. For example, the accelerometer is good at detecting initial movement
of the arm and vibrations on object contact, while EMG can detect extension and flexion of the
fingers when opening and closing the hand. Sensing the entire grasp process versus only trying to
detect no grasp/grasp states has advantages for small objects and for EMG or acceleration whose
features do not appear in steady-state signals. To clarify, data from the whole grasp process is used
to pick up unique impulse features, but our target is to detect no grasp/grasp state transitions.

While EMG and accelerometers have been used in the past to try to detect grasps [7, 43], our
incorporation of multi-view optical data from three low-resolution cameras is novel for such a
wearable system. Beyond providing comparable grasp recognition performance on previously
tested objects, we believe our camera fusion approach also has the potential to improve reliability
and robustness across objects and users. This is because EMG and accelerometer data can be high
variance depending on a particular grasp style [14, 32], while the presence of objects in the camera
views tended to be a lower variance feature. These advantages show how fusing many sensors
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Fig. 2. High-level overview of highly-related worn grasp-detection systems. Comparable numbers drawn
from published materials as best possible, but please consult individual papers for specifics.

together is advantageous and how Contextra offers a unique contribution to the space of grasp
detection that has not been filled by previous wearable devices.

We emphasize we tackle the problem of detecting grasps from continuous sensor streams, not
just classifying the type of a known grasp. Compared to more common problems in prior work of
classifying hand pose, grasp type, or what object is held, ours is a unique problem with its own
challenges. We call this problem continuous grasp detection and believe it is an exciting problem
because if solved, a system could be an automatic “wake word” recognizer for contextual Al, saving
devices with conventional sensors like head-mounted cameras enormous power. In sum, in this
paper we contribute the following:

(1) A multi-view camera sensing approach on the wrist for detecting when object grasp events
occur.

(2) A late-fusion model that incorporates EMG and acceleration sensor features from the entire
grasping process to overcome camera weaknesses like occlusion.

(3) Our entire system is low-power and privacy-sensitive so that it could run all day and prevent
higher-power headset cameras and microphones needed for context-dependent apps from
burning power and invading user privacy.

2 Literature Review

In this section, we review past systems that used wearable sensors to look at objects held in a user’s
hand. We break out our discussion into three primary subsections. These range from (1) using held
objects to recognize activities, the least similar to our task, to (2) classifying grasp types, and finally
(3) detecting object grasps, the most similar to our task. Although there is overlap between our
techniques and those used in grasp research for robotic hands, we omitted these works because of
the gap in interaction task and the lack of human physiology to sense. The one exception is recent
work on (4) sensor fusion to plan grasps for prosthetic robotic hands which we discuss in a final
subsection.

2.1 Object-Centered Activity Recognition

The first category of work we examine involves systems that use only wearable sensors (i.e., no
instrumentation of objects) to detect an object a user is holding and/or how is it being used to
recognize a particular activity. These sorts of systems are unique from Contextra in that they do not
sense grasp directly and are not focused on recognizing grasps, and instead focus on recognizing
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activities or use of held objects, which is different from our goal. Despite this, many of the sensing
techniques used, particularly in camera-based systems are also applicable for our grasp recognition
task and worth explaining because they both involve imaging objects near the hand.

Cameras are one of the most powerful sensors available for sensing object-based activities. This
is because they are able to directly image if there is something being held in or near the hand.
Maekawa et al. conducted investigations through multiple works showing how a camera on the
wrist could effectively be used in combination with IMU and microphone data to capture information
what object a user is holding to classify activities of daily living [29, 30]. Independently, IMUs,
particularly the accelerometer component have also been popular for recognizing object-based
activities [8, 25, 34]. Common techniques when using IMUs involve sensing grasping posture and
motion with held objects to get clues about the activity [8, 34]. Other less common sensing schemes
that have been used to recognize object-based activities include magnetic sensors [26, 27, 46],
capacitive sensors [38], and measuring vibrations from a voice coil actuator [35].

2.2 Grasp Type Classification

There is a separate body of work focused on the problem of classifying what type of grasp is
being used. Knowing what type of grasp a user is using is often important because it can clue the
identity of the object or what context or activity the object might be used in. Many different sensing
approaches have been used on wearable devices to classify grasp types without instrumenting
objects including EMG [1, 16], force myography [22], cameras [9, 24, 49], and inference directly
from hand pose [54].

The approaches in these works are in general broken into two parts. First, sensing is used to
detect what class of grasp is being used, such as a pinch, palmar, or cylindrical [1, 9, 16, 22, 49].
In some cases such as Fan et al’s work using EMG, they also examined how performance varied
for objects of different sizes and weights as these characteristics are directly correlated with the
strength of EMG signals [16].

The second part of this category involves taking information about the grasp type and combining
with prior knowledge about a specific context or object set to identify what object the user is
holding [9, 16]. In Section 6, we describe our vision for how Contextra could be combined with a
cameras on a headset to recognize objects in a power-efficient manner. Additionally, we discuss
how objects could be directly identified from our camera data given prior information, similar to
the works discussed in this section.

2.3 Object Grasp Detection

The last category of systems are focused on the same interaction problem as our system. Namely,
given a continuous sequence of sensor data, can we identify at which moments, if at all, a user
grasps objects? Systems in this category are most related to Contextra. As such, to show a direct
comparison of Contextra to prior work, we provide a table in Figure 2 that provides a high-level
overview of technical properties and performance for systems of this category.

Early on and to this day, the most popular approach for detecting grasps in this way has been
using RFID. These systems instrument objects with passive RFID tags and place an RFID reader on
the user’s body to detect (via proximity) when objects are picked up. Schmidt et al. [39] pioneered
this technique with a more abstract goal focused around interactions with objects once held and
used RFID reader prototypes integrated into clothing. Since then, many systems have iterated on
the idea, compacting the prototype into a glove [18] or wristband [7, 17, 43].

While reliable, a major drawback with using RFID is that it requires all objects to be instrumented
with tags ahead of time. To overcome this, many other sensing techniques have been used to detect
grasps either instead of or in addition to RFID. The most popular of these involve sensing biosignals
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generated from muscles or neurons that are characteristic of the arm grasping an object. Example
biosensing techniques that have been explored in the past include EMG [31, 43], force myography
[50], and electrocorticography [37]. While biosignals can generate strong features and avoid object
instrumentation, their practical use is limited by the high variance of their signals across different
user populations.

One of the most promising ways to retain the benefits of biosignals like EMG while overcoming
their limited robustness is to use data from additional sensing channels such as accelerometers
[43]. Outside of EMG, tiered sensing has also shown promise when combining channels such as
accelerometers and near-infrared detector pairs [11]. Two of the systems just mentioned are the
closest to Contextra’s approach, thus we describe them in more detail here.

Theiss et al. [43] created a wearable system for predicting grasps using a tiered approach to
sensing to minimize power consumption. By default, an accelerometer was running, then when
motion was detected, the EMG system was woken up. Then if a grasp was detected, RFID was used
to recognize what object was picked up. Their grasp detector is notable because of its goal to detect
grasps by using a fusion of features derived from accelerometer and EMG data. We note a critical
difference that Theiss et al. used an EMG (Myo) band placed on the upper forearm while ours was
worn at or close to the wrist. Sensed EMG signals are much stronger where muscle is thicker near
the elbow, however this location is not practical for a system like ours that envisions itself as a part
of a future smartwatch.

In Cofer et al’s [11] work on the other hand, they used optical sensor data from 20 near infrared
emitter-detector pairs. The NIR sensors were placed on a wristband and aimed inwards towards the
wrist to measure tissue displacement and detect when objects were touched (picked up) by users.
When a grasp was detected, and IMU was used to classify the grasp type. Note the NIR sensors
only collect a single brightness value each, thus are much lower resolution than the cameras we
use. Although the sensors used in Cofer et al’s system were less like Contextra than Theiss et al’s,
their 1D-CNN model is more similar to ours than Theiss et al’s decision-tree based model.

Compared to these past systems, we believe Contextra presents a novel innovation in fusing
IMU and EMG data with feature-rich optical data from multi-view cameras. No prior system has
attempted to use wearable camera data (single or multi-view) alongside EMG and IMU data for
grasp detection. For the problem of binary grasp detection, Contextra is the first system to fuse
data from different sensor types together. Prior systems that employed multiple types of sensors
only used them in tiered approaches where one sensor detected an event that was used to trigger
another [11, 43]. Finally, to combine our sensing channels, we took advantage of a multi-layer, late
fusion deep learning model that stabilized performance across objects.

In practice, this means our system is more accurate at detecting when objects are picked up
than prior work, and can be expected to work more reliably across a wider variety of different
object shapes and sizes. This is the primary advantage of our technique over those compared
against in Figure 2. While our grasp performance is superior to some other systems, for those
with comparable performance Contextra demonstrated an ability to work across a wider set of
objects. For example, Xiao et al. [50], Maufroy et al. [31], and Theiss et al. [43] relied heavily on
an EMG-based technique, thus performance was only strong for larger and heavier objects with
required more muscle contraction. We believe our improvements in grasp detection versatility pave
the way for a general-purpose context-aware agent that can provide feedback to a user based on
what they are holding in a way not possible with previous techniques.

2.4 Sensor Fusion for Planning Prosthetic Hand Grasps

Robots always know when they are initiating a grasp. Thus, instead of recognizing when grasps
occur, work in the robotics field is typically centered around separate problems of determining the
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Fig. 3. Contextra system diagram. We take 30 x 30 optical data from three mini active IR cameras and fuse it
with 16 EMG channels and IMU acceleration. These sensing streams are combined in our model to perform
object grasp detection.

correct pose to execute the grasp and planning the motion [23]. However, with recent advances
in prosthetics, there have new avenues of robotics research focused on using wearable sensors to
initiate and plan grasps for prosthetic hands. These works differ in that there is a human wearing
the sensors who expresses an intent to grasp. The primary sensing modality used is EMG to allow
users to use natural muscle contractions to control the hand. Secondary sensing modalities such as
eye-tracking, IMUs, and cameras have also been used in sensor fusion which is highly relevant to
our system.

Deshmukh et al. [12] and Zandigohar et al. [53] used a fusion of EMG and a head-mounted
camera to plan grasps. In both they created a camera-EMG fusion model. Deshmukh et al. focused
on classifying grasp types from EMG data [12] and Zandigohar et al. segmented continuous EMG
data into four grasp motion phases [53]. On the other hand, Shi et al. used a model combining eye
tracking and a camera from a headset and EMG and an IMU from the arm to control a prosthetic
and plan the pose of grasps [41].

While many of the technical techniques used overlap, there are key differences between these
works and Contextra. The first key difference between these works in ours is the difference in
task. Namely, these works focused on planning grasp hand poses rather than using existing hand
poses and objects to detect grasp moments. Second, our technique has the novel advantage of using
multiple lower resolution cameras worn on the wrist instead of a single high resolution camera
on the head. This change allowed Contextra to consume much less power while achieving strong
performance.

3 Implementation

Our work on Contextra involved developing both novel sensing hardware and the software to
process sensor data. When combined, these components could automatically detect when the
wearer picked up objects. In this section we detail their technical background and implementation.

3.1 Sensor Selection

One of the most important questions in the initial design of our system was what sensing modalities
to use. To decide, we broke down the anatomy of a grasp to identify opportunities for sensing. A
typical grasp begins with the user reaching for an object by moving their arm. An IMU sensor,
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Fig. 4. Timeline of a user grasping an object, along with demonstrative traces of sensor data from our different
sources. In each frame, we highlight how different sensing channels (optical, EMG, and acceleration) can
contribute by sensing different features of the grasp. For example, motion of reaching for an object can be
sensed by the accelerometer, then the object can be imaged by the cameras when opening the grip, and
finally EMG can sense muscle contraction when lifting the object.

particularly an accelerometer, is suited for detecting gross motion such as this. Next, a user opens
their hand (if not already), makes contact with the object, and closes their hand around it. An
accelerometer may be useful again for detecting vibrations from contacting the object, but the
extension and flexion of the fingers may be better sensed using EMG. In addition, cameras could be
used to detect objects that have come into close contact with the hand and may be likely picked up.
Finally, a user tightens their grip on the object and picks it up to complete the grasp. Depending on
the weight of the object, EMG can be useful here to detect muscle strain during the lift. Otherwise,
gross arm lift movement can be sensed using the IMU again.

While EMG and an accelerometer are powerful on their own, they do have certain disadvantages
that make it hard to detect some grasps. A characteristic example is picking up objects slowly or
lightly. A prominent EMG feature useful in grasp detection is the transient change in signal power.
When picking up a light object, there is less strain put on the arm muscles so signal power changes
less, to the point where in some cases it is barely noticeable from an EMG trace if an object is being
held or not. Similarly, a prominent accelerometer feature is looking for signal spikes produced by
vibrations when making contact with an object or surface. When objects are picked up quickly or
aggressively, these spikes are prominent. On the other hand, when objects are picked up slowly or
gently, the spikes can be nonexistent.

As a result of these disadvantages, we were motivated to pursue a sensor fusion approach
where we combined data from multiple sensing modalities. Beyond EMG, and an accelerometer,
which each have their own advantages for sensing different parts of the grasp, we searched for
an additional sensing channel we could use to recognize objects held in the hand. In particular,
we wanted a sensor that could use a static frame to detect grasps since transient features were
already well covered by EMG and the accelerometer and could be diminished depending on the
grasp. A promising candidate was to use optical data, such as from a depth sensor or camera, to
see if an object was being held in that moment. However, optical sensors often have their own
disadvantages, such as being vulnerable to occlusion, betraying user privacy, and consuming more
power.

With all this in mind, we decided to take a balanced approach and used a series of three infrared
(IR) cameras which were low-power and low-resolution and put together could prevent occlusion
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Component Power consumption (mW) @ 3.3V
Cameras (3 x APDS9500) 33 mW
EMG band (EMG + IMU) 150 mW
ML model (A15 Bionic) 72 mW

Total = 255 mW

Table 1. Power consumption of each system component used for grasp detection.

with multiple views. In more detail, the reason we used three cameras as opposed to one was
because each camera can capture a different part of the hand and grasp that may be occluded
in a single, static view. For example, a camera near the palm can see pinches of the index finger
and thumb, but not objects that are approached from the side. This approach was inspired, in
part, by other recent work taking advantage of multiple, smaller camera views for hand pose
tracking [13, 19, 51]. We decided upon the number of cameras (not more or less) through an initial
exploration in our simulator (detailed in subsection below) that showed three could well capture
all visual aspects of the grasp without redundancies.

A diagram visualizing our chosen sensing channels can be seen in Figure 3. We note that despite
our decision to use multiple sensors at the same time (mini IR cameras, EMG, and accelerometer),
compared to a higher-res camera, total power consumption is still less and we still do not collect
any data more privacy-compromising than 30 x 30 IR images (with background removed).

3.2 Camera Sensor Details

Contextra uses the APDS9500 optical sensors. These sensors are marketed to detect gestures using
built-in blob detection algorithms. In our work, we used them as mini IR cameras by reprogramming
the firmware to output raw camera frames over SPI. Notably, beside the imaging sensor, each
component also includes an IR LED that can be used for active illumination of the target. Cameras
were chosen as opposed to just photodiodes because of the number and quality of features cameras
provide. Photodiodes may detect the presence of a target, but a camera can better see its shape to
discern the target is a finger, not a held object.

When taking a picture of a target, we capture a sequence of three frames while toggling the LED
from OFF-ON-OFF. Once complete, the two LED-OFF frames are averaged and subtracted from the
LED-ON frame to produce, using in-situ hardware processing, a single 30 x 30 frame. In this frame,
only the objects illuminated by the LED are visible (e.g., those close to the sensor), while all of the
background is removed. An example an output frame can be seen in Figure 5. The advantage of this
approach is that the most prominent features in the output images are those which are salient to the
grasp detection problem, namely the hand and objects near the hand. This makes the downstream
recognition task easier by obviating the need to perform separate object segmentation on the
camera frames to find the hand and objects. In addition, by removing the background, coupled
with the fact that the cameras are already low-resolution, we betray significantly less privacy than
higher-resolution cameras.

The goal of the camera sensors we used was to image objects held in the hand, thus one potential
confounding factor is the presence of other, non-grasped objects nearby. While certainly a challenge,
this is a situation that highlights the benefits of fusing other sensing modalities. For example, IMU
and EMG would not trigger when just hovering near, but not grasping other objects. In addition,
because of their limited field-of-view and proximity to the hand, many objects are naturally occluded
and only those directly in or next to the hand are visible.
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. -

Fig. 5. Example data from the three wrist cameras and mappings to their locations on the wrist; captured
while picking up a paper cup from a table. These views show what kind of features can be picked up by each
camera.

3.3 Power Consumption

Each camera outputs frames at 280 FPS. By reprogramming registers, we were able to lower the
LED peak current to 56.7 mA and the exposure time the LED was on to 216 us. This led to only a
6% duty cycle for the LED and 3.4 mA average LED current draw which made each sensor only
consume 11 mW during continuous operation. Considering that comparable small-package depth
sensors and higher-res cameras can consume in the range of hundreds of mW [15, 42], using these
sensors could result in an up to 10x savings in power. The low-power consumption of our optical
sensing stack was one of the driving factors behind Contextra’s overall design and purpose. Since
it runs at such a low power, Contextra can run continuously to recognize grasps where other more
powerful but higher-power systems cannot. In this way, even when Contextra cannot sense all
parts of a context, it can provide a trigger to wake up other devices in a low-power sleep, such as
smartglasses or a mixed reality headset, to perform deeper recognition.

Many existing commercial VR and XR headsets have built-in cameras used for pose tracking,
however running and processing these cameras is a significant reason why they do not possess "all
day" battery life. The Meta Quest 3 and Apple Vision Pro, two popular headsets with such capabilities,
only have battery lives of 2.2 and 2.0 hours, respectively [3, 33]. In addition, although such headsets
already use cameras (thus camera-grasp detection would not increase power overhead), these
devices are also typically used only for short sessions of entertainment or productivity. Our target
for Contextra is instead to augment devices like AR smart glasses that do not constantly run cameras
and could have an "all day" runtime. This is the reason we advocated for using less powerful but
lower-power camera sensors.

Outside of the cameras, our band that collects EMG and IMU data consumes 150 mW and our
estimate for the power consumption of our model on a mobile chipset is 72 mW (details in subsection
3.7). A breakdown of the power consumption of the entire system by component is shown in Table
1.

3.4 Comparison to Other Camera Sensors

When selecting the camera sensor, we sought a camera that possessed a small package size, low
power, active illumination, high-frame rate, and a resolution large enough to sense object and hand
features. The APDS9500 fit all of these criteria and thus we chose it because it was easy to procure
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Fig. 6. Views from the final camera positions of the thumb, palm, and pinky during a run of our simulator.
On the right we show a rendering of the grasp pose looked like for each of the four test objects shown.

and interface with. However, there are alternatives used by other systems with similar properties
or minor trade-offs.

Maekawa et al. used an unspecified camera which captures 352 x 288 pixel images at 6 Hz (no
power specified) [30] OptiRing from Waghmare et al. used the OVM6948 and a red LED [45]. This
sensor had a 200 x 200 pixel resolution, but was limited to 30 FPS and required 39 mW to run due
to extra analog processing required of its signal. CyclopsRing by Chan et al. used a SONY CCD
sensor that captured 640 x 480 images at 30 FPS [10] No power was listed but the similar OV7670
consumes 60 mW continuously [6] General trends from these systems and other popular sensors
(OV2640: 1600 x 1200 px, 15 FPS, 125 mW [5], IMX708 Pi Camera 3: 4608 x 2592 px, 10 FPS, >750
mW [4]), are that within this form factor, resolution can be increased, but this trades off frame rate
and power consumed. These were two properties we wanted to optimize for, which justified our
balanced choice of resolution, frame-rate, and power.

One of the most competitive alternatives is the Himax HM01B0. This sensor, used by Maruki et
al. in their IRIS ring-worn camera, runs up to 60 FPS at 4 mW and is ~2x as large as ours. There is
no active illumination however; pulsing an external IR LED would result in a total power similar to
ours and add size. Notably, the HM01B0 has a 320 x 320 pixel resolution, much higher than ours.
While more resolution may help discern tiny objects better, many of the contextual features we
detect (e.g., presence of hand and object) are detectable with a lower resolution.

While Contextra could operate with higher-res camera sensors, there are three main drawbacks
to consider. First, high-res cameras (with some exceptions such as the HM01B0) tend to consume
significantly more power [4-6]. Second, the higher the resolution, the greater the bandwidth burden,
which can slow overall system speed. Finally, increasing resolution increases the risk to invade
user privacy. Down-sampling a high-res camera could be used to alleviate this, but the other two
drawbacks remain. Additionally, a lens with a short focal length could help to preserve privacy
when designing a future high-res camera sensor, however using external lenses with existing
sensors adds bulk.
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3.5 Camera Position Optimization

In Contextra, we take three of the camera sensors and place them at different positions around
the wrist. The positions, which are shown in Figure 5, include (A) beside the thumb, (B) in front
of the palm and ring finger, and (C) beside the pinky finger. These positions were found, after
experimenting with live data, to provide the most information on object grasps across all camera
views.

We target the camera sensors to be placed on the front of a smartwatch band, in a normal worn
position on the wrist. From experimenting with sensor data, we knew the rough positions we
wanted the three sensors to be located on the wrist. However, to refine further and determine the
exact position, pitch angle, and tilt angle of each sensor, we made a simulator that could take in 3D
models of a grasp pose and an object and output the best sensor configurations.

The simulator modeled each sensor as a directional light source and camera with the correct
field-of-view (45°) to match the real-world sensor. To ensure that the simulated cameras did not all
converge the same “best” view, we implemented strict boundaries on how far the sensors could
move from their starting positions (thumb, palm, pinky), and how much they could tilt. This
resulted in views which could image the same target, but retained the unique perspective from
their respective wrist position.

With camera sensors, placing them too close to the hand can lead to occlusion by the palm
[13]. This is part of the reason why our simulation was so important and we experimented with
changing the sensor tilt angle. In our simulation, we assumed the smartwatch band was placed
on the wrist, ~3.5 cm from the base of the palm. During our Evaluation, we asked users to wear
the real band in this same position, however due to a fixed minimum band size and differences in
users’ wrist sizes, the band was worn further up the forearm for some users (such as the model in
Figure 1). Thus, although we did not formally evaluate band placement on the wrist/forearm, the
wrist was the primary worn position and variations were represented in our data.

In the simulation all parts of the hand and object that could be imaged were painted a unique
color according to their region of interest. The regions we painted included the palm (red), fingers
(green), fingertips (yellow), and object (blue). The purpose of the simulator was to take input on
whether it should reward having more or less of certain regions in each image and find sensor
configurations that maximized this reward function. During operation, the following process was
used:

(1) Instantiate the real-world experimented sensor positions as origin points.

(2) Define a range of possible sensor translations and rotations (from user input).

(3) Iterate over all possible sensor configurations and capture a 2D image at each.

(4) Use a weighted function to calculate a score for each image by looking at each pixel, assigning a
score (0: black, 1: red, 2: green, 3: yellow, 4: blue) based on what color that pixel is, and summing
all pixel scores.

(5) Average the best angle and position configurations across different grasp poses to get the best
overall configuration.

In our analysis, we picked a range of translations and rotations to match the physical constraints
of the band. In our color-weighted function, we assigned highest weights to the fingertips and
object (most important for grasp) and lowest to the palm (least important for grasp). After running
this simulation on four different objects, while varying approach and wrist angles, we averaged
the properties of the best configurations. From here we made minor tweaks to account for outlier
views, and produced a “simulated optimal” sensor configuration, shown for different objects in
Figure 6.
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Fig. 7. A diagram of our model architecture. Our model was split into two branches based on ground truth
label structure. For camera data, we used frame-based labels which indicated a touch or no touch state and
for EMG and IMU data, we used event-based labels which indicated when grasp events (pick up or set down)
occurred. EMG and IMU data was combined using a middle-fusion approach and then passed through a
heuristic boost function to convert its output to match the frame-based labels. Once in a common format,
the outputs from both branches were combined and returned with the frame-based labels.

The resultant configuration produced by our simulator is what we used to guide the mounting of
our real-world sensors on the EMG band. Anecdotally, we noticed an immediate improvement in
the features we were able to image in live camera data after switching to simulation-verified sensor
positions. Outside of Contextra, we believe there is potential in this approach for other wrist-based
optical sensing systems and believe it could be improved by using motion capture data to pose the
3D models.

3.6 Data Processing

A challenge when processing our data was that each sensor stream came from a different source,
each with a different data rate, and with frame timing that could not be synchronized. This was
a problem because our fusion model needs fixed-size CNN inputs. Without interpolation, if we
received 26 EMG frames for 1 camera frame and 27 EMG frames for the next camera frame, our
fused CNN input would not be fixed size. To manage this, we employed a buffered window approach.
In this approach, data from all sources was buffered for one second. Each second, a timer was called
that emptied these buffers and interpolated them to the expected FPS of each stream to account
for possible dropped or extra frames. For example, for one camera, we expected 75 new frames
each second. This was downsampled from the 280 FPS output of the sensor to improve model
latency with negligible performance impact. If 74 or 76 were received instead, we interpolated
in time to get exactly 75 frames. The effect of this on the final data was almost undetectable.
Afterwards, the one-second chunks collected could be rearranged and overlapped to produce
fixed-sized, windowed inputs to the model. We used a 400 ms window with 20% overlap, which has
been found to encapsulate the duration of a grasp [50].

The one second buffer we used in our implementation meant in live operation, predictions would
take one second to arrive plus the inference time of the model (4.4 ms). We chose this buffer size to
minimize interpolation needed to batch data across sensor streams. However, with a minor increase
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in interpolation, buffer size can be reduced down to 400 ms, the size of our model’s window. This
would cap the end-to-end latency of the system at ~405 ms.

Before being passed into our grasp detection model, some of the data steams required extra
processing. Aside from background subtraction and a normalization step the camera frames were not
pre-processed and were passed directly into the model. On the other hand, EMG and accelerometer
data benefited from small transformations. For EMG data, we applied a bandpass filter (cutoff
frequencies of 20 Hz and 800 Hz) and performed full-wave rectification. The filtering helped remove
baseline noise and motion artifacts while rectification improved interpretability of the signals.

Past EMG-based systems have found success with extracting features such as mean absolute
value (MAV), RMS, waveform length, and covariance between channels and running these features
through a random forest or SVM classifier [1, 16, 43]. We tried this approach but found better
success by keeping the EMG signals as a time series and processing them with a 1D-CNN. This
may be due to the fact that we were classifying EMG using event-based grasp labels that prioritized
transient changes in the data.

For accelerometer data, we used a similar approach to EMG. First, we removed the gravity
component from the accelerometer vector. We then took each window and subtracted the min of
the window from the entire window and squared the result. The purpose of this transformation
was to emphasize transient spikes in the data which is the main accelerometer feature we used for
grasp detection.

3.7 Model Architecture

A diagram of our complete system architecture can be seen in Figure 7. This diagram includes
the data processing steps described in the previous subsection and the machine learning models
described in this one. Contextra’s approach to recognizing grasps uses data fusion. In our model
we decided to use two layers of fusion. First, the data from the cameras was separated from the
EMG and accelerometer data. At their core, the data in these two groups looked at grasp from two
different angles. The features from the camera data tried to answer the question "is there currently
an object held in the hand?", for which a label is assigned to each frame to indicate if a grasp
is occurring or not. On the other hand, for the time-series data, the features tried to answer the
question "did a grasp just occur?", for which a label is assigned to an event in time. To simplify
processing, we treated both the moment of picking up an object (lift off from rest) and setting down
an object (touch down at rest) the same as "grasp events". As a result of this label distinction, one
model with frame-based labels was used for camera data while a second model with event-based
labels was used for EMG and accelerometer data.

Inside the frame-based model, a 3D-CNN was used. This was found to have better results than a
2D-CNN since it can capture temporal changes in image data, and was found to train more stably
than a convolutional LSTM model. Inside the event-based model, separate 1D-CNNs were used for
EMG and accelerometer to capture transient temporal changes in the signal traces. After this, the
outputs of the 1D-CNNs were jointly fused before additional fully-connected layers. The output
from both models were combined using a late-fusion algorithm.

In the algorithm, we use the raw output of our frame model as our base for prediction (before
taking its argmax). We then look for transitions in the predicted output of event model from 0
to 1 (we predict an event just started). When found, we add a boost B, to the index of the frame
output corresponding to the class predicted least in the last 5 frames. The purpose of this boost is
to weight transitions in the frame model predictions when events are predicted by the event model.
On top of this, a boost By, is also given to the index of the frame output corresponding to the class
predicted in the last frame. This second boost serves to give momentum to state predictions and
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prevent bouncing output. In our evaluation we used boost values of B, = 20 and B,,, = 10 which
were found by experimentation on pilot data.

We used this heuristic because we found (A) the frame-based model was generally more reliable
and (B) that transitions in the frame and event-based models were difficult to exactly match in time.
As such it made sense to use the weaker event model to influence the transitions of the frame model
but ultimately use the frame model for prediction outputs. In addition, the output frame-based
predictions were converted to transitions again in our evaluation metric (see Results section) for
a similar problem of aligning predicted transitions with ground truth transitions which using an
event-based metric allowed us to overcome.

During testing, we found our model’s performance improved if pre-trained on a larger corpus of
pilot data. This pilot data was separate from the main training data collected on participants during
the study. The size of this pilot data was roughly 4 hours of grasp events collected on data from one
of the authors and two additional users (not in user evaluation). Our model was pre-trained for 10
epochs on the pilot data then fine-tuned for 40 epochs with user data using the ADAM optimizer
and a learning rate of le-4.

In total, the model has 613 M FLOPs and 4.07 M parameters. When tested on a Core i7-10750H
laptop CPU the model achieved an inference time of 4.4 ms (227 FPS output). For reference, new
frames arrive only every 13.3 ms which still gives a 8.9 ms buffer for real time inference. For a
mobile deployment we would expect our model to target a SoC such as the Apple Watch S9 which
contains a 4-core neural engine. Exact specs for the S9 are not available, but its design is based on
the A15 Bionic which has benchmarked an average latency of 9.44 ms (106 FPS) at 72 mW for a
67 M parameter CNN-based model 16x larger than ours [21]. Thus, we are encouraged our model
could run at speed and remain low power on a mobile chipset.

3.8 Ground Truth Data

To collect ground truth data during our study, we used a Sensel Morph touch pad [40]. The pad
detected when there was a pressure applied to it, which we used as a signal for if the object
was currently set down. For the event-based model, we used transition points in the Sensel data
(e.g., from pressure to no pressure) to signal when a grasp event occurred. In our study design,
we considered a potential issue in that by detecting pressure, the Sensel would not detect the
exact moment of the grasp but rather when the object was picked up and set down. Although an
important distinction, this ended up not mattering with the technique for evaluating our data on
the labels we adapted from Cofer et al. [11] and describe in Section 5. This is because a Sensel pick
up transition always happens after a correctly predicted grasp up transition and vice versa for the
set down transitions.

We also encountered a challenge when we discovered the outline of the pad (made of reflective
metal) was clearly visible in the optical camera data. This worried us that our model may attempt
to train on this feature instead of looking at the shape and outline of objects. We fixed the issue by
laying a cloth over the pad and table underneath which provided a uniform and undistictive visual
pattern.

4 Evaluation Procedure

To evaluate the performance of the system we developed, we conducted a user study on grasp
detection accuracy. The goal through the study was to investigate the following research questions:

(RQ1) How well does Contextra recognize grasps of a diverse set of objects?
(RQ2) How much does Contextra’s performance degrade if it is used by a user not included in the
training data?
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Fig. 8. The set of eight objects used in our user study. Objects were chosen in part to parallel prior work and
in part to offer a diversity of sizes, weights, and reflectances.

(RQ3) Are there certain types of objects that Contextra performs better or worse on than others?

Our study was run on a group of 8 participants (8 male, 2 female, mean age 27). The study lasted
approximately 45 minutes in length and was broken up into three identical sessions. Each session
began with the participant putting on the Contextra device. We did not measure participant’s hands
explicitly, however anecdotally, hand sizes varied widely (large to small) as well as large variations
in wrist size and hair thickness on the back of the arm (which could be seen in camera images).

Participants then stood in front of a table on which was a Sensel touch pad and a collection
of eight objects (shown in Figure 8). Half of the objects in this set were chosen to overlap with a
common set from prior work [43]. The other half was consisted of new objects designed to both
provide more challenging targets and align with our envisioned example uses of Contextra.

During the session, a researcher placed an object on top of the Sensel pad, began recording data,
and asked the participant to pick up and set down the object 15 times. We did not explicitly instruct
users to perform challenging cases such as grasps with no object in the hand or resting the hand
on a surface. Nevertheless, participants were asked to experiment with different typical grips they
might use to pick up the object, and incorporate natural motions and actions while holding or not
holding an object. For example: a participant is not holding an object and starts with their hand at
their side. Upon being prompted to pick up a water bottle, they grab it around its base and hold it
up to their mouth before setting it back down. Once complete, they return their hand to their side.
The purpose of this was to capture grasp poses that users would use in the real-world and not just
repetitive artificial grasps.

The goal of this instruction was to incorporate variety in the sensor data that would be more
typical of how our system might be used in real-world interactions. While doing so makes the
sensing task more challenging, it reflects the reality that users do not always grasp the same objects
with the same grip or intensity. Further, a peak in EMG or accelerometer data on its own cannot
reliably be assumed to be a grasp when working outside a lab setting.

Once 15 graps were complete, this process was repeated for the remaining seven objects. At
the end of the session, participants removed the Contextra band before re-wearing it for the next
session. The purpose of this was both to give participants a break and simulate different worn
positions of the band typical of normal use.

In our Evaluation, because of the nature of the ground truth sensor used, we only tested for
cases where the object was picked up immediately after grasp. While sensor information from the
entire grasp sequence (in a 400 ms window) was available to our model, the models were trained
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Fig. 10. Precision and recall were fairly consistent across objects, with precision varying only 0.03 from the
mean for cross-session and recall only 0.04. Performance was loosely correlated with the size of objects
because small ones were harder to image. Small objects like the USB and pencil performed worst while large
ones like the bottles and notepad performed best.

to detect ground truth transitions, in other words, the exact moment in time of the grasp. We did
not explicitly test cases were objects were grasped but not picked up. These cases may be more
challenging due to less IMU motion data, however the IMU acceleration and EMG spike features
would still be present and could help maintain performance.

5 Results

In this section we detail the results from our evaluation. For each study, we also examine whether
the research questions of interest we outlined in the previous section were met. To conclude the
section, we provide a breakdown of performance with respect to different objects tested.

5.1 Calculation of System Performance

In our system, we calculate performance metrics for the percentage of correctly identified grasps,
missed grasps, and spuriously detected grasps. We chose this approach because of the fact that our
system continuously outputs predictions for a grasp state while our objective is to detect finite
grasp events in time, thus measuring accuracy on a frame-by-frame basis is less useful. Before
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calculating metrics on our model’s outputs, we first pass the predictions through a filter stage that
looks for short oscillations between the low (no touch) to high (touch) states. If any state change
is detected lasting less than 0.24 s, we determine it to be spurious and filter it out. This cleans up
noisy oscillations in our output predictions. The chosen value (0.24 s, 3 window overlaps) was
taken from Cofer et al’s assumption of 0.16 s for minimal press length [11], where we added an
extra window overlap of a window (0.08 s) after finding it increased stability.

When a change from the low to high state is detected in either label or prediction outputs, we
check to see if the other time series also changed from low to high before the original series returns
to the low state. If such a change is found, the event is correctly detected and marked a true positive.
If not, the event is marked a false negative if it is initially detected in the label series, and a false
positive if detected initially in the prediction series. This is the same technique used by Cofer et al.
[11]. Improving their method, we also added extra logic to detect when low states are missed to
ensure false negatives and false positives are correctly categorized.

5.2 Cross-Session Performance

To evaluate the results from our study, we performed two analyses. The first of these involved
looking at performance across sessions. In this analysis, for each participant, we used a model
trained on data from two out of the three sessions and tested on the third session. This process
was then repeated for the other two sessions and results were averaged to get final results for each
participant.

In our results, we tabulated the number of true positives (a grasp occurred and we predicted a
grasp), false negatives (a grasp occurred and we did not predict it), and false positives (we predicted
a grasp that did not occur). From these values, we calculated metrics for precision and recall to
measure the predictive performance of our system. These results are shown in Figure 9. We chose
to use these two metrics because of their widespread usage for comparability and their ability
to show how well our system recognizes relevant grasp events. We also did not chose accuracy
because we’re detecting entire grasp events, not classifying individual frames, and accuracy would
be diluted because there are many more no grasp states. Between precision and recall, we are most
interested in high recall because our priority is to detect grasp events when they occur. Since we’re
trying to detect “wake gestures”, recall measures how often the “wake” is not missed.

In our cross-session results, we calculated an average precision and recall over all users of 0.87
(SD=0.09) and 0.86 (SD=0.07), respectively. These results confirm RQ1. While recall was fairly
consistent across participants, precision varied more widely with some participants having a much
greater number of false positive triggers. We believe this behavior may be due to the volume of data
we collected in our study. Curious, we tested using a smaller subset of session data and without
pre-training and found that our model’s precision improved greatly (>15%) for all participants when
the size of the training corpus was increased. In the future, we believe this could be improved by
collecting more training data of that user, and also pre-training with a larger corpus of data collected
by many users. This is in line with past work showing the benefit of large training corpuses for
EMG [36].

5.3 Cross-Participant Performance

In our second analysis, we used the same methods as the first one, however this time we were
interested in examining how well the system performed when tested on new users it had never
seen before. To do this, for a particular participant, we trained our model on data from all three
sessions of all other participants and tested the model on all three sessions of the participant in
question. The results from this analysis are also shown in Figure 9.
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Fig. 11. Ablation analysis for the different sensing channels of Contextra. Results are shown for mean precision,
recall, and loU from the cross-session participant data.
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Fig. 12. A subset of the ablation analysis specifically on cross-user data to highlight the advantage of adding
cameras to EMG. Results are shown for mean precision, recall, and loU.

In our cross-user results, we calculated an average precision and recall over all users of 0.82
(SD=0.12) and 0.84 (SD=0.08), respectively. This result is lower than our system’s performance for
the cross-session case, highlighting the fact that due to the unique physiology of each user, the
features they create are slightly different (answering RQ2). Thus, including data from the current
user in training will improve the performance for that user. This result is also consistent with prior
work using EMG sensor data which showed that although powerful, they tend to have a higher
variance across users as compared to alternative sensing methods [14, 32].

5.4 Per-Object Performance

Next, in this analysis we break down performance for the different objects tested. In Figure 10 we
show precision and recall for each of the eight objects. To answer RQ3, results were fairly consistent
across all objects. For precision, all objects were within 0.03 of the mean for the cross-session case,
with the lowest value for the pencil (0.84, SD=0.19) and highest for the banana (0.89, SD=0.12).
For recall, all objects were within 0.04 of the mean for the cross-session case and variance was
slightly higher with the USB performing the worst (0.83, SD=0.15) and the 0.5 L bottle the best
(0.91, SD=0.08). These results are notable because as compared to prior work [7, 43], our system
did not have a significant fall off in performance for smaller or lighter objects, indicating more
robustness for recognizing grasps of diverse object types.

5.5 Sensor Ablation Analysis

In our final analysis we performed an ablation study on the contribution of each sensing channel
to the results of our entire system. For this analysis we used our cross-session data and trained and
ran separate models for all major configurations of sensors. Specifically this included breaking out
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results for: only one camera, all three cameras, only EMG, only IMU, EMG + IMU, EMG + IMU +
one camera, and all sensors.

5.5.1  Precision and Recall Analysis. Mean results for precision and recall are shown in Figure 11.
Overall, results were the worst when using one camera. Of the cameras, the thumb camera was the
worst performing with a low recall (0.27, SD=0.21) while the pinky camera performed best, albeit
with a still low recall (0.51, SD=0.25) but the highest precision (0.72, SD=0.19). This is logical given
that the pinky camera has the best view of objects as they are approached while the thumb camera
may only seem them, if at all, once picked up. On the other hand, combining all cameras provided
a significant boost to precision (+0.22) and recall (+0.18) versus the best single camera (pinky).

For the other sensors, the cases for just EMG, just IMU, and EMG + IMU all performed very
similarly (both metrics within 0.03). Of these, EMG + IMU performed best for precision (0.71,
SD=0.06) and recall (0.77, SD=0.06). Compared to the all cameras case, EMG + IMU had a slightly
worse precision (-0.03), and a much worse recall (-0.13).

We also examined the cases of adding just a single camera to the EMG + IMU case. By doing so,
precision significantly increased (+0.20 at best) while recall decreased (-0.18 at worst). The best
camera sensor to combine with EMG + IMU was the pinky cam which had nearly the best precision
(0.88 SD=0.09) and clearly the best recall (0.68, SD=0.19).

Finally, the best combined average score for precision (0.87, SD=0.09) and recall (0.86, SD=0.07)
occurred when all sensors were used together. Compared to the best combined scores for using a
single camera (pinky) with EMG + IMU, precision was only slightly worse (-0.01), but recall was
significantly better (+0.19).

Comparing other cases, using all sensors significantly boosted precision (+0.13) while only
slightly reducing recall (-0.04) versus only all cameras. Compared to EMG + IMU, using all sensors
significantly boosted precision (+0.16) and recall (+0.10). These results show adding EMG and
IMU to a camera-only model boosted precision and most importantly, adding cameras to a model
that uses only EMG + IMU significantly boosted precision and recall. Given prior works [43] use
only EMG and IMU to predict grasps, this result confirms the benefit of sensor fusion and shows
Contextra’s novel contribution of fusing multi-view cameras provides demonstrable benefits for
grasp detection.

5.5.2 Intersection-Over-Union Analysis. In addition to precision and recall, we also include a
third metric, intersection-over-union (IoU) in Figure 11. This metric is typically used in object
recognition but we thought it would be appropriate for examining how well our model overlaps in
time predictions of grasp events with ground truth labels. Typically, a value above 0.5 is considered
good, however for grasp events of multiple seconds, higher is better. In our ablation analysis we
saw IoUs above 0.5 when using all cameras, and EMG + IMU with one or all cameras. In general
results for IoU followed the same pattern as the precision and recall ablation results with the best
value (0.57, SD=0.10) achieved by fusing all sensors.

5.5.3 Cross-User Analysis. It is well known that EMG sensors have a high variance across users
due to differences in physiology. For this reason, we also thought it would insightful to conduct a
subset of our ablation analysis on cross-user data to see the advantage of adding cameras to EMG.
The results for this analysis are shown in Figure 12. We discussed earlier how recall was the most
important metric for grasp detection to not miss true positives. In this analysis we can see clear
patterns, mirroring the cross-session analysis, that show using cameras, particularly adding them
to EMG + IMU sensors, helps to significantly boost recall along with all other metrics.

In cross-user analysis, we acknowledge a limitation of our evaluation on a small set of 8 partici-
pants. We believe the large volume of data (x3-x20 more than related studies [11, 43]) and positive
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Fig. 13. Examples of future applications for data collected from Contextra along with demonstrative example
camera frames. Contextra could be used to detect micro gestures on the hand or objects (A), the identity of a
particular object (B), or when a user’s hand is near a surface for surface-based interactions (C).

results from these participants were strong enough to show the validity of Contextra’s method.
However, ultimately we were not able to capture the most diverse set of possible hand physiologies
and grasp poses. As such, additional testing on more users would be necessary to fully evaluate the
generalizability of this approach.

Comparing Contextra to prior work, we reference the performance columns from the table
in Figure 2. Direct comparisons between systems is difficult due to the differing performance
metrics, experimental conditions, and tested objects. Nevertheless, focusing on the cross-session
and cross-user cases, Contextra exceeds or matches performance of prior systems and uses what
we believe to be a more challenging object set (smaller and lighter-weight).

5.54  Performance Trade-offs. For full clarity, we highlight some of trade-offs made for this perfor-
mance improvement. To recap, for power, the EMG and IMU sensors from our band collectively
consume 150 mW and each camera sensor consumes 11 mW. For bandwidth, the EMG and IMU
sensors collectively produce 126 kB/s of data and each camera sensor produces 66 kB/s. This means
by adding cameras precision is boosted by 23% and recall by 13%, but power is increased by 22%
and bandwidth by 157%. Different embedded systems may have different budgets, but we believe
for the target application of using grasps as a wake gesture for contextual Al, a significant increase
in recall is well worth these trade-offs.

6 Discussion
6.1 Future Work for Grasp Applications

In this subsection, we provide discussion of extended applications where Contextra could be used in
the future. To recap our rationale behind focusing on grasp, we see detecting grasps as a key building
block to enable deeper and more powerful contextual experiences. The ability to continuously and
reliably detect when objects are picked up is what makes the following experiences possible.

6.1.1 All-Day Context Sensing for Al. The vision behind AI hardware devices, like the Humane Al
Pin [20] and features of the Apple Vision Pro [2], is to eventually have a device that can learn about
a user’s behavior all day and use that knowledge to provide just-in-time contextual assistance.
However, present limitations in the power consumption of such devices prohibit their runtime and
privacy concerns may restrict constant use of prominent wearable cameras. Contextra on the other
hand, can continuously run because of its privacy-aware and low-power sensors. By using the two
devices in conjunction, Contextra can solve problems of current devices by continuously sensing
at the wrist to keep up with context info, then waking up the headset’s sensors for Al assistance
when ready.
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6.1.2  Using Objects to Infer Context. Using external devices in a constellation with Contextra has
additional benefits for context recognition. Our wristband can know how you are grasping and
interacting with an object, while the headset can know what object you are interacting with. More
concretely through an example: (1) Contextra detects the user is holding something, (2) a headset
is woken up and its cameras are used to determine the user is holding a water bottle, (3) EMG
and optical sensors from the wristband are used to determine how the user is holding the bottle:
they are opening it then drinking from it. The context is the user is taking a drink of water. Once
context is determined, relevant interactions can be enabled, such as having a habit app update a
daily hydration tracker.

6.1.3 Additional Uses of Camera Data. When experimenting with the output from our camera
setup, we hypothesized that it may be possible to track other interactions that build upon grasp.
Examples, along with relevant camera data, are shown in Figure 13.

One of these is micro gestures on the fingers or held objects. Thumb gestures such as pinches,
taps, and swipes are a potential source of input for a wearable that does not have traditional buttons
or touch screens. Once an object is detected as grasped, Contextra may also be able to track thumb
gestures on said object to make the object interactable. Returning to the banana example, if a user
picks it up and performs swipes on it, they could cycle through information on a heads-up display
like nutrition facts or recipes.

Other potential interactions include performing object recognition directly from the Contextra
camera data or identifying micro-contexts of the hand. Such micro-contexts include if it is on a
surface, in a pocket, or near the head. All together, these future directions hint at potential for
Contextra’s sensing stack to be taken beyond grasp and enable new context-centered experiences.

6.2 Limitations

We believe our proof-of-concept prototype demonstrates the feasibility of our multi-view optical
fusion method for detecting grasps. Nevertheless, there are limitations to consider. First among these
are characteristic limitations of wrist-based optical sensing. When placed on the wrist, cameras can
occasionally suffer from occlusion. Two common [11, 13, 19, 43] techniques for offsetting this issue,
namely using multiple camera views and fusing data from sensors not affected by occlusion like
(EMG and acceleration), were both used in this work. Contextra also has the advantage that even if
the fingers are not in view, the object may be able to be imaged. Still, in some rare cases, such as a
tiny, light, object that is gently picked up with the fingers straight ahead, detection accuracy may
drop.

Unique to our optical sensing technique is also sensitivity to IR backgrounds with a high dynamic
range. A reminder: our camera processing uses a subtraction step between the scene illuminated by
the IR LED and background IR illumination. Although we only conducted our study indoors, our
sensor has an auto-gain feature, and we tested that clear images can still be obtained in sunlight.
Challenging cases occur when the user is in a dark environment, which the auto-gain tunes to, but
sees a light source or a bright window in the camera view. This can produce small artifacts in the
subtracted image which might be mistaken for objects. However, if a future software model was
developed to perform background subtraction on raw 60 x 60 camera frames, this algorithm could
also take care of these IR artifacts.

This point connects to the final issue on limitations of our camera sensors. First, our cameras are
susceptible to occlusion such as long or baggy shirt sleeves. In such cases detection may would still
work, albeit with reduced performance, by using only EMG and IMU. Second, some objects are too
small or have a surface so dark and matte that they are not well captured by the IR cameras. At their
core, the camera sensors work by looking for differences in reflectivity between the objects and
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background that correspond to object faces and contours. As such, cases such as a dark, matte object
on a highly reflective background could be recognized, but a matte object on a matte background
would be more challenging. By looking at the raw 60 x 60 outputs from our image sensors, we
know the features of such objects can be made out better when more pixels are available. As
such, we expect that if the higher-resolution data were made available, grasp detection of these
types of objects would improve, however there would be trade-offs in privacy versus our current
low-resolution approach.

6.3 Implications For Practitioners

Many of the insights from this research may have practical implications for practitioners designing
context-dependent applications. For one, we have demonstrated the ability to provide always-on
context detection at a low power (255 mW) and that conserves privacy for users versus constantly
running headset cameras. For practitioners this means they can develop apps that treat event
detection as a black box and can focus instead on recognizing events that have been detected by
our system.

Our quantitative results showed that grasp detection performed best on larger objects with a
larger profile to image while held in the hand. Exploration and testing of our camera sensors also
showed us better optical performance on glossy objects and those with high contrast from the
background. As such, designers should structure the entry points to their contextual apps around
objects with these properties. For example, if tracking calories consumed from a bag of popcorn,
reliability would be better for detecting grasp of the bag rather than individual kernels.

Finally, our ablation results showed that while performance was best when fusing all sensor
streams, acceptable performance could still be achieved when using a subset of sensors. This is
valuable information for practitioners who may want to design apps that could change their wake
up expectations dynamically based on sensors available. For instance if a user puts on a sweatshirt
with long sleeves that cover their wrist, practitioners could detect the cameras are blocked, switch
to EMG+IMU-only mode and lower the grasp confidence threshold outputted from Contextra to
wake up their app. This design would ultimately lead to more wake ups than may be needed, but
would help to maintain a consistent end-user experience even when some sensors are obstructed.

7 Conclusion

In this work we presented Contextra, a wrist-worn system that uses sensor fusion of EMG, ac-
celerometer, and multi-view IR camera data to detect when users grasp objects. Our approach
builds upon prior systems for grasp detection by incorporating a novel late-fusion model that
takes event-based processing of EMG and IMU signal spikes and adds frame-based processing of
low-resolution IR camera data from three different sensors positioned around the wrist. For the first
time, we can detect grasp in a wrist form factor while still being privacy-aware, low-power, and
enabling reliable detection across objects. Through a user study involving picking up a diverse set
of objects and incorporating natural grasp poses and motions, our system yielded a grasp detection
recall of 0.86. Interactions with objects form the foundation of many of the contexts we are in and
activities we perform. By creating a device that is able to reliably detect object grasps, our hope is
to provide a key component to enable an exciting variety of context-aware interactions.
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