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Figure 1: SmartPoser fuses UWB distance and IMU data from an of-the-shelf smartphone and smartwatch (A) to track a 
wearer’s real-time arm pose (B & C). 

ABSTRACT 
The ability to track a user’s arm pose could be valuable in a wide 
range of applications, including ftness, rehabilitation, augmented 
reality input, life logging, and context-aware assistants. Unfortu-
nately, this capability is not readily available to consumers. Systems 
either require cameras, which carry privacy issues, or utilize mul-
tiple worn IMUs or markers. In this work, we describe how an 
of-the-shelf smartphone and smartwatch can work together to 
accurately estimate arm pose. Moving beyond prior work, we take 
advantage of more recent ultra-wideband (UWB) functionality on 
these devices to capture absolute distance between the two devices. 
This measurement is the perfect complement to inertial data, which 
is relative and sufers from drift. We quantify the performance of 
our software-only approach using of-the-shelf devices, showing it 
can estimate the wrist and elbow joints with a median positional 
error of 11.0 cm, without the user having to provide training data. 
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1 INTRODUCTION 
Despite being worn on the wrist, contemporary smartwatches know 
more about their users’ legs, lungs, and heart than their arms. For 
instance, smartwatches can predict locomotion mode, track total 
number of steps taken, and measure respiration and heart rate. Yet, 
beyond some very specifc use cases (e.g., hand washing detection 
[3], the activities of the arms and hands are unknown, despite 
the fact that they are the chief appendage we use to manipulate 
the world around us. If we could better track the arms, we could 
power more sophisticated applications spanning ftness [10, 54], 
rehabilitation [5], life logging [30], occupational training [7], and 
context-aware assistants [34], to name just a few domains. 

Researchers have long recognized the importance of tracking arm 
pose to support such use cases. As we will discuss in the Related 
Work section, a wide variety of methods have been brought to 
bear on this problem. Much prior work has utilized external, fxed 
equipment (most often cameras), but this immediately precludes 
mobile use. Next most common are worn sensor arrays or suits, 
which are comparatively more practical, but still face signifcant 
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consumer adoption headwinds. Ideally, we could track a user’s arm 
pose with devices they already own and routinely carry with them 
[17, 35], relying on no external infrastructure. 

In this work, we present SmartPoser, a new arm pose tracking 
method that uses only an of-the-shelf smartwatch and smartphone 
(Figure 1). In other words, our technique is software only, and 
could be enabled on recent devices as an over-the-air update or app 
download. SmartPoser also allows users to be on the move while 
it performs its tracking, a capability not found in many prior ap-
proaches [42, 61]. Taken together, these advances could signifcantly 
improve the ease-of-use and practicality of mobile arm-tracking 
applications. 

Uniquely, we take advantage of recent ultra-wideband (UWB) 
functionality to capture the distance between the smartwatch and 
smartphone. We fuse this with more conventional IMU-reported 
data, specifcally watch and phone orientation and acceleration. 
Importantly, the UWB measurements are absolute, and less drift-
prone as compared to relative inertial data used in most prior work. 
As a consequence, our tracking output is more stable and accurate. 
In our user study, our system achieved a median positional error 
of 11.0 cm for the wrist and elbow joints, which is comparable to 
prior work requiring uncommon hardware. 

The contributions of this work are as follows: 1) A self-contained 
and software-only approach for arm pose tracking combining UWB 
and IMU data, which is unique in the literature. 2) A functional, 
real-time implementation using two common of-the-shelf devices. 
3) User studies that show our system achieves the best tracking 
accuracy among systems that do not require special user instrumen-
tation or external infrastructure. 4) Open-sourced, synchronized 
UWB/IMU/Kinect data, processing pipeline, and trained models. 
https://github.com/FIGLAB/SmartPoser. 

2 RELATED WORK 
In this section, we review past systems for arm pose tracking. In 
addition to arm tracking, we also discuss systems for whole-body 
pose tracking that have used comparable sensing technologies. We 
frst cover systems that use UWB for pose tracking, before moving 
to IMU-based systems. We then conclude with systems most similar 
to our own — ones that combine inertial data with some form of 
distance-based measurement. 

2.1 UWB-Based Pose Tracking 
Our system takes advantage of ultra-wideband (UWB) ranging. This 
technique uses the time-of-fight of a challenge-response transmis-
sion to determine the distance between two devices. Unlike other 
more popular RF technologies, such as WiFi or Bluetooth, UWB op-
erates at a very low energy level and instead of varying frequency 
or power, the technology transmits information at specifc times us-
ing a large bandwidth. This results in multiple benefcial properties 
such as high immunity to multipath fading, high data throughput, 
and excellent time-domain resolution, allowing for more accurate 
localization and tracking, down to centimeters [12]. 

Due to the strengths just described, UWB has become a popular 
approach for pose tracking systems due to its ability to accurately 
measure the distance between devices in space. A common setup 

is to place UWB beacons on the limbs and torso of a user and in-
strument an environment with one or more receivers to measure 
the time-of-fight of signals transmitted from the beacons [29, 57]. 
Researchers have also created a UWB radar with a large, MIMO an-
tenna array that can capture a radio "image" of the user’s pose [44]. 
When compared to cameras, UWB can be more privacy-sensitive 
and can operate through walls and other occlusions [44]. 

Beyond UWB, there have also been other RF technologies used 
for pose tracking, many of which share similar advantages to those 
just described for UWB. In comparable setups, researchers have 
placed a transmitter in the environment and tracked the pose of a 
user (often uninstrumented) by measuring signal refections. Exam-
ples of such systems include ones that use RFID scanners and tags 
[21, 49], mmWave radar [40], and even WiFi [36, 37]. One drawback 
of systems that use purely RF ranging is that although they are 
able to measure the distance to diferent parts of the body, it is 
difcult to distinguish fne limb orientations such as the rotation of 
the wrist. For this reason, RF systems are often combined with IMU 
sensors that can provide information on limb orientation [9, 15, 63]. 

2.2 IMU-Based Wearable Pose Tracking 
The idea of tracking pose with a wearable system of inertial sensors 
did not surface until the miniaturization of magnetic, angular-rate, 
and gravity (MARG) sensors in the late 1990s [4]. Pioneering sys-
tems had to deal with the problem of fusing measurements from 
multiple instruments to track limbs, all the while minimizing drift. 
In addition, these systems also had difculty detecting and correct-
ing for erroneous measurements such as magnetic disturbances 
[4, 28]. The two dominant approaches that were developed to solve 
these problems include Complimentary flters by Bachman et al. [4] 
and Kalman flters by Marins et al. [28]. While these two seminal 
works would develop the theoretical foundations for tracking pose 
with inertial data, many others went on to take these ideas and de-
velop them into real-world systems [25, 31, 60, 62]. The commercial 
Xsens system can be seen as a current peak of this classical fltering 
and optimization-based approach [38]. By using a suit embedded 
with 17 IMUs located all over the body, this system is able to track 
a wide range of motions at 120 FPS [38]. 

In recent years, a new class of systems has emerged which are 
able to use signifcantly fewer IMUs to track pose with a similar 
level of accuracy [8, 20, 41, 42, 50, 58, 59]. A breakthrough and com-
mon theme in these systems has been modeling inertial data over 
multiple frames in time, often with neural networks. A seminal 
system is Sparse Inertial Poser (SIP) by Marcard et al., which was 
able to drop the sensor burden from 17 IMUs down to 6 by using 
an optimization-based method [48]. Building upon this, Huang et 
al.’s Deep Inertial Poser (DIP) [16] removed the constraint in SIP 
of needing to access the entire sequence of data and instead only 
used a subset of nearby frames in a bidirectional RNN (Bi-RNN). 
More recently, TransPose [59] and Physical Inertial Poser (PIP) [58] 
advanced DIP’s Bi-RNN approach, improving fdelity and framer-
ate (to 90 FPS). This was primarily achieved by decomposing the 
model into sub-tasks that are easier to solve and combining the 
outputs to get user pose and global translation. More recently, IMU-
Poser [32] used IMUs already found in smartphones, smartwatches 
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and earbuds to produce a best-guess pose from one to three points 
of instrumentation. 

Of the IMU-based systems, the most similar to ours is ArmTrak, 
developed by Shen et al. [42]. Similar to SmartPoser, the system 
focused on tracking arm pose (instead of full-body pose) and did this 
by using a single IMU on the wrist instead of multiple IMUs placed 
across the body. Unlike the later deep learning methods, they used 
a hidden Markov model to probabilistically estimate next states 
for arm joint positions. This approach produced good arm pose 
estimates using a single IMU. However, the method was slow (with 
reduced accuracy when run in real-time) and could not track users 
on the move (only evaluated with feet planted after calibration). 
We detail our improvements over ArmTrak, particularly tracking 
results, in subsection 5.5. 

2.3 Fusing Inertial and Distance Measurements 
for Wearable Pose Tracking 

One of the greatest challenges in working with IMUs, particularly 
consumer-grade components, is noise and drift. For this reason, 
it is often advantageous to have a secondary sensor stream that 
can provide absolute position or orientation data. In the context 
of body tracking, worn systems have combined IMU data with 
magnetic feld sensors [39, 55], ultrasonic transmitters and micro-
phones [19, 26, 47], infrared distance sensors [56], micro-fow sen-
sors [27], acoustic ranging [61], and optical linear encoders [33]. As 
previously mentioned, UWB beacons have also been used for this 
purpose, albeit not in a wearable form factor [9, 15, 63]. For each 
of these sensing approaches, there are important trade-ofs to con-
sider such as cost, robustness to occlusion, and across-environment 
reliability. Yet despite their diferences, these sensors all share the 
same operating principle of capturing absolute measurements to 
augment the relative measurements of worn IMUs. Most impor-
tantly, all of the aforementioned systems in this section require new 
and special devices to be worn by the user. A key contribution of 
this work is showing this ranging+IMU fusion approach can now 
be achieved on popular commodity devices that users already own. 

3 IMPLEMENTATION 
Our motivation in developing SmartPoser was to track arm pose 
using only a smartphone and smartwatch (Figure 1). Figure 2 pro-
vides a high-level system overview and data fow. We now describe 
the core components of our system. 

3.1 Proof-of-Concept Devices 
We selected an iPhone 13 Pro (iOS 16.4) and an Apple Watch Series 
7 (watchOS 9.4) as a pair of example, of-the-shelf, and popular 
smart devices. This choice was also motivated by Apple’s mature 
UWB and inter-device communication APIs that facilitated our de-
velopment. Android lags behind in this regard, with Google adding 
UWB support via a Jetpack library only in late 2022 [11]. This is to 
support applications like lost object tracking, unlocking cars, and 
AR localization. Fortunately, the number of UWB-capable smart 
devices has steadily grown in recent years [53], and the feature 
looks to become increasingly pervasive. 

3.2 UWB Ranging & IMU Data 
In our custom app, we use the iOS Nearby Interaction API [2] to 
set up a UWB ranging session between the watch and phone. Once 
the session has been established, we receive distance updates at 
approximately 5 Hz. We note that iPhones ofer higher sampling 
rates and even azimuth and elevation readings when a UWB device 
is located within a narrow cone-shaped feld-of-view projecting 
from the rear of the device. Unfortunately, the feld of view is too 
narrow for us to make practical use of this capability. 

To get data from the IMUs onboard the phone and watch, we 
used Apple’s Core Motion API [1], which is standard across all 
iOS devices. Using the API, we acquire data about the current 
orientation quaternions and acceleration measurements of each 
device at roughly 25 FPS. We use this as the native frame rate of our 
system, upsampling the 5 Hz UWB data to the more responsive 25 
Hz IMU rate by duplicating the most recent UWB value. Finally, we 
note that although the two devices can estimate the gravity vector 
and magnetic north, we found it was more reliable to explicitly 
align the two devices’ frames of reference. For this, we require the 
devices to be placed side by side, which could happen e.g., in a 
charging dock overnight. 

3.3 UWB Correction 
In early piloting, we saw that UWB measurements exhibited sys-
tematic ofsets and characteristic noise, especially for certain arm 
pose regions. This is chiefy due to loss of line-of-sight between the 
two devices due to body occlusion (e.g., putting the arms behind 
the head). The example data in Figure 3 illustrates this efect. To 
capture this data, the authors placed the iPhone 13 Pro smartphone 
in their left-front pants pocket, and wore the Apple Watch Series 
7 smartwatch on their left wrist. The authors then performed a 
range of exemplary arm motions. During this process, the phone-
to-watch distance was recorded (Figure 3, blue line). To provide a 
ground truth distance, we used an Azure Kinect and its native SDK 
to capture a 3D skeleton of the user in real-world units. Using this 
skeleton, we ”attached” a virtual phone and watch, and compute 
the distance between the two (Figure 3, orange line). 

Given the ofset and noise is semi-structured, we can compensate 
for some error, especially if we take advantage of orientation data 

Figure 2: SmartPoser system overview. Our model has 46.4k 
parameters in total, with 3k parameters for the UWB Cor-
rection model and 43.4k parameters for the Pose Estimator 
model. 
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Figure 3: Example user motion sequence over one minute. Raw UWB distance is plotted in blue — note the signifcant errors, 
far exceeding possible arm lengths, when the watch loses line-of-sight to the phone. Our corrected UWB stream is plotted in 
green. Ground truth distance is provided by an external Azure Kinect is shown in orange. 

from the IMUs, which already provide some cues as to the orien-
tation and location of the arms. For this, we designed a UWB cor-
rection network, which we implemented as a 2-layer bi-directional 
LSTM with 8 hidden units each. The input to the RNN is a 125-long 
sequence (5 seconds of data at our system’s native framerate of 25 
FPS) of raw UWB distance measurements, plus phone and watch 
orientations (3x3 rotation matrix format) and accelerations (X/Y/Z), 
for a total feature dimension of 25. We scale the UWB distance 
measurements by the wearer’s arm span. The scaling ensures that 
the model is able to generalize to various body sizes. We also scale 
the acceleration values by 30 in order to make them suitable for 
training, following prior work [58, 59]. The RNN outputs a sequence 
of corrected distance measurements. The correcting efect of this 
RNN is illustrated in Figure 3, green line. In this example sequence, 
mean UWB tracking error is reduced from 34.5 cm to 6.7 cm, and is 
considerably more stable as well. 

3.4 Pose Estimation 
Our pose estimation RNN ingests corrected UWB data along with 
raw IMU data (watch and phone orientation and acceleration). Tak-
ing inspiration from Deep Inertial Poser [16] and TransPose [59], 
this network is also implemented as a 2-layer bi-directional LSTM, 
with 32 hidden units each. Watch orientation and acceleration are 
normalized such that they are relative to the phone’s frame of refer-
ence. Along with having an absolute distance measurement, using 
relative orientations helps to make the system more robust against 
IMU drift. As with UWB correction, we scale the acceleration values 
by 30. We use the same input vector format as our UWB correction 
network – a 125-length sequence of UWB distances, phone and 
watch orientations and accelerations. This 125-length sequence is 
a rolling input bufer, and new predictions are made in real-time 
whenever a new sample arrives in the bufer (at 25 Hz). 

This RNN outputs a 125-long arm pose sequence, containing 3D 
joint locations for the wrist, elbow, and shoulder. The predicted joint 
locations are 9 values normalized to the user’s arm span, which we 
can "reproject" into real-world units by scaling them by the user’s 
arm span. Rather than taking the most recent pose prediction (i.e., 

the 125th frame), we use the 120th frame. Functionally, this means 
we are predicting 200 ms behind real-time. This approach to use the 
n-5th output frame was directly inspired by TransPose [59], and 
ofers a compromise between latency vs. accuracy. Note, during 
testing we also used the n-5th frame of ground truth to match with 
our prediction frame. 

3.5 Model Training 
In summary, SmartPoser consists of two machine learning elements 
– UWB correction and then pose estimation. We train the full system 
end-to-end using the Adam optimizer, with a learning rate of 3e−4. 
The UWB corrector is trained to regress to the Kinect-derived 
distances (Section 3.3), scaled by user arm span, and using mean 
squared error loss. The pose estimator network is trained to regress 
to arm joint positions (shoulder, elbow, and wrist) using a mean-
per-joint-position-error (MPJPE) loss. Kinect-derived ground truth 
arm joint positions are preprocessed to have a shoulder frame of 
reference (i.e., ignoring world body rotation). 

Figure 4: Example set of predicted poses. Vertex error (vs. 
Kinect ground truth) color coded. 
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Figure 5: The 20 terminal arm poses utilized in our user study. Note that participants were asked to transition between these 
poses and all intermediate data was captured for evaluation (i.e., not just the terminal poses). 

The total loss of our system is the sum of the UWB corrector loss 
plus the pose estimator loss. The system is implemented using Py-
Torch and the PyTorch Lightning frameworks. For efcient training, 
we train the model to predict a full motion window of 125 samples 
(5 seconds) rather than just the last frame, following the method in 
[16, 59]. In other words, during training we use non-overlapping 
windows, however for testing we overlap windows by all but one 
new frame. 

3.6 Model Inference and SmartPoser Output 
To facilitate development and debugging, UWB and IMU data is 
streamed to a laptop (M1 MacBook Air 2021). On this machine, 
our trained model takes 8.1 ms per inference (on the CPU, using 
pytorch), meaning we output pose predictions as fast as data arrives 
(25 FPS). To verify SmartPoser could run entirely on-device, we 
also converted our trained model to CoreML with mixed precision 
compute and found it took only 0.99 ms per inference on an iPhone 
12 Pro. Although we envision our arm pose data most often being 
used internally and unseen (discussion in Section 6), we did build a 
basic visualization tool, seen Figures 1, 2, and 4. 

4 EVALUATION 
To evaluate the performance of SmartPoser, we conducted a user 
study with 10 participants (mean age 25.4; 3 identifed as female, 7 as 
male). The study took place in a typical indoor ofce environment, 
lasted approximately 45 minutes, and compensated $20. The study 
was divided into two data collection phases. The frst phase focused 
on arm motions a user might perform in the course of their daily 
activities. Phase two captured less ecologically valid, but more 
varied and challenging gross motor arm poses (Figure 5). 

Before participants wore our test devices, the smartphone and 
smartwatch were placed side-by-side, as they might rest in a charg-
ing dock. We use this to align their independent reference frames 
into a common, global frame of reference. We then asked partici-
pants to wear the smartwatch on their left wrist and to place the 
smartphone in their left front pocket (see Figure 1), which is a 
common placement [17, 35] (though we note other arrangements 
are possible, which we discuss in Limitations). Before each study 

phase began, we had users perform a T-pose with their arms (palms 
facing down, such that the watch face is parallel to the ground) in 
order to capture the relative orientations of the two devices on the 
body (and importantly, the same study procedure used in IMUPoser 
[32], Transpose [59], Deep Inertial Poser [16], and Physical Inertial 
Poser [58]). 

4.1 Daily Activities Procedure 
The frst phase of data collection focused on arm poses that users 
might assume during daily routines. To capture such data, we had 
participants complete an "obstacle course" style study (see e.g., 
[6, 18]). We selected 20 brief mock activities, setup at stations within 
our study environment. These activities were divided into seven 
categories: Domestic (ironing, open jar, vacuum foor, wipe table), 
Grooming (comb hair, wipe forehead, wash with loofa), Food & Bev-
erage (stir pot, pour teapot, drink from cup), Moving Items (move 
grocery bag, lift box above head, wear bag on shoulder), Exer-
cise (jumping jacks, biceps curls), Home DIY (use screwdriver, use 
paint roller on wall), and Miscellaneous (check time on watch, read 
magazine, fick light switch). Although this set of activities is not 
comprehensive, we have confdence our system did not overft. For 
example, the Demo Activities segment of our Video Figure shows 
predictions of unseen poses resulting from naturalistic activities. 
This is a good signal of expected performance for poses and activi-
ties not used in training and matches our anecdotal observations 
throughout the course of development. 

A large TV screen was positioned in the study area with a list of 
the activities. In addition to this visual prompt, the experimenter 
also spoke aloud the next activity to perform, and controlled the 
visual display. Although some activities were bimanual, in general 
we asked participants to use their left arm, as it was the one being 
tracked. All activities were performed one after another while data 
was continuously recorded, thus beyond the activities themselves, 
we also captured the transitions between them and miscellaneous 
organic gestures such as participants adjusting their clothes. Partici-
pants completed this procedure twice, taking roughly 10-15 minutes 
in total. 
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4.2 Gross Motor Arm Pose Procedure 
Real-world activities tend to be performed in front of the body, or 
at least close to the torso. As such, they tend to have less variance 
and less extreme arm positions. Thus, as a compliment to our phase 
one data collection, we also captured a more gross-motor-oriented 
arm pose dataset. For this, we use a set of 20 terminal arm poses, 
seen in Figure 5. These exemplify a variety of spatial endpoints, 
joint positions, and joint orientations. 

As with phase one, we used a TV screen to prompt participants 
with a random sequence of terminal poses (20 poses, 10 repeats, 
random order). Importantly, data was continuously captured as 
participants transitioned between these poses. Thus, instead of cap-
turing 20 poses, our study captures transitions between ~20�2 pose 
pairs, so the efective variety and volume of motions we captured 
was large. In addition, the amount of time spent in the terminal 
poses is very low, avoiding bias. Transitioning through the 200-pose 
sequence took approximately 10-15 minutes. 

4.3 Data Capture & Ground Truth 
Throughout both phases of the study, we used an Azure Kinect [46] 
to capture ground truth data on joint positions and orientations 
of participants’ arms. The Kinect ran continuously, and whenever 
we got a new frame of UWB+IMU sensor data (at ~25 Hz), we 
paired it with the most recent Kinect frame. Across all participants, 
our activities dataset contained 151k frames of data (representing 
roughly 105 minutes of data), and our gross motor dataset contained 
129K frames of data (~90 minutes). 

5 RESULTS & DISCUSSION 

5.1 Train/Test Procedure 
We evaluated our model using a leave-one-participant-out cross 
validation scheme (i.e., ten-fold cross validation with whole partici-
pants’ data as folds). This simulates "out-of-the-box" accuracy that 
requires only a single calibratory pose and no training data from 
the wearer (whereas much prior work requires per-user training 
data, or even per-worn-session training data). While we train on 
real-world activities and gross motor arm motions datasets com-
bined, we break these results out where appropriate to give further 
insight into real-world accuracy. 

5.2 Pose Tracking Accuracy 
Across all participants, we found a median error (averaging elbow 
and wrist joints) of 11.0 cm (SD=0.9 cm). As we move along the 
kinematic chain, error unsurprisingly increases — median error by 
joint: shoulder 0.17 cm (SD=0.02 cm), elbow 8.7 cm (SD=0.9 cm), and 
wrist 13.3 cm (SD=0.98 cm). Looking at error broken out by gross 
motor arm poses vs. real-world activities, we fnd median error 
(elbow and wrist) of 11.2 cm (SD=2.3 cm) and 11.1 cm (SD=1.3 cm) 
respectively. Figure 6 provides a summary of these results for me-
dian error. Other results metrics for the combined data set of gross 
motions and real-world activities can be found in Table 1, and the 
calculated CDFs in Figure 8. Our results already used a leave-one-
user-out cross validation and had a low STD of 0.9 cm across users. 

Figure 6: Median per-joint positional error was 11.0 cm av-
eraged across all study participants for the elbow and wrist 
joints. For the gross motions phase, median per-joint posi-
tional error was 11.2 cm, 9.2 cm for just the elbow, and 13.2 cm 
for the wrist. For the real-world activities phase, median per-
joint position error was 11.1 cm, 8.4 cm for just the elbow, 
and 13.7 for the wrist. Error bars are standard deviation (cm). 

Table 1: Calculated metrics for all arm joints for the com-
bined data set of gross motions and daily activities. All met-
rics are reported in cm. 

However, to further verify we were not overftting, we also com-
puted metrics testing on the training set specifcally and observed 
a median wrist error of 11.9 cm (vs. 13.3 cm from cross validation). 

5.3 Spatial Error 
As discussed earlier, UWB ranging is sensitive to occlusion (in our 
case, body occlusion). Our UWB Correction RNN (Section 3.3) com-
pensates for some of this error, but not entirely. Figure 7 compares 
mean euclidean error of the raw UWB distances (21.0 cm) vs. our 
corrected UWB values (8.6 cm), broken out by study dataset. We 
also generated a scatter plot (Figure 7) plotting our corrected UWB 
distance vs. the Kinect-derived ground truth distance for all 131k 
frames of study data from our gross arm pose procedure (represent-
ing ~1.5 hours of data). We include a line of best ft, which has an 
�2 = 0.72. 

Although the correlation is strong, there are other error modes 
and behaviors visible. To further investigate this, we created a series 
of heatmaps visualizing the maximum UWB error in space around 
the body using our study data. We look at arm pose data from all 
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Figure 7: Left: Plot of corrected UWB distance vs. Kinect-
derived distance (280k datapoints). Right: UWB Correction 
RNN performance across study datasets. Mean Euclidean 
error reduces from 21.0 cm to 8.6 cm on average. Error bars 
are standard deviation. 

Figure 8: Cumulative distribution functions (CDF) of the 
elbow and wrist joint errors. 

participants combined, and then only the wrist joint, which had 
the largest addressable volume and largest median error. 

Figure 9 provides three heatmaps – a frontal, side, and top-down 
view of a wearer. Heatmaps are shown for the error of raw UWB 
distance, corrected UWB distance, and joint predictions versus 
Kinect-derived ground truth. All the heatmaps have some common 
error hot spots (red-orange regions in Figure 9), while the volume 
in the front and to the left side of the body is reasonably accurate. 
Most of the regions show up in blue, corresponding to an error 
of between 0-15 cm. Wrist locations that could lead to potential 
self-occlusion, such as the right thigh and the space above the left 
shoulder, intuitively show up as highly erroneous regions in the raw 
UWB distance heatmaps. Note how our UWB correction module 
is able to account for most of these errors. The error-prone areas 
for the wrist joint error map well with the error-prone regions for 
corrected UWB distance and are altogether much much lower than 
the original errors for raw UWB distance. 

5.4 UWB Ablation Study 
The primary contribution of SmartPoser is the introduction of UWB 
distance data to improve arm tracking results. To quantify how 

Figure 9: Three rows of heatmaps visualizing maximum ab-
solute Euclidean distance error for raw UWB distances (i.e., 
not corrected), corrected UWB distances, and predicted wrist 
joint position. For all measurements, error (in meters) is cal-
culated with respect to Kinect-derived ground truth. Note 
the scale for the raw UWB distances (top row) is diferent 
than the bottom two rows. 

much the improvement was, we ran an ablation study of our com-
plete UWB+IMU system versus one that used only IMU data. The 
results of this study can be seen in Figure 10. 

Averaging the results from both the gross motions and daily 
activities phases, we observed a median error of 11.7 cm for the 
elbow and 16.7 cm for the wrist for the model with only IMU data. 
Compared to our standard results from the model with UWB+IMU, 
this meant error was 3.0 cm (25.6%) greater for the elbow and 3.4 cm 
(20.4%) greater for the wrist when using only IMU. Additionally, 
when looking at pose outputs, we fnd UWB+IMU is much more 
stable. For example, when holding static poses with IMUs alone 
they tend to "droop" slowly to a mean pose. These results show 
that the contribution of UWB distance measurements is signifcant 
to SmartPoser and a key to helping enable higher-fdelity pose 
tracking. 

5.5 Comparison to Prior Work 
To contextualize our results, we compare SmartPoser accuracy 
to other arm tracking systems that also do not require special 
instrumentation (i.e., no new or exotic sensors worn on the body) 
or external infrastructure (i.e., entirely self-reliant and work on-
the-go). While these systems were evaluated on diferent datasets, 
we believe it is applicable to compare them to SmartPoser. 
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Figure 10: Ablation results showing the efectiveness using 
both UWB and IMU data for pose estimation. Results are 
calculated on data from both phases of the user study. When 
adding UWB data to the model for IMU alone, median error 
for both joints decreases from 14.2 cm to 11.0 cm. 

ArmTrak [42] achieved a real-time median error of 12.0 cm for 
elbow and 13.3 cm for wrist while performing free motions with 
the arm (accuracy was higher when using an ofine model). Of 
note, ArmTrak required participants to stand still (i.e., feet planted 
without the ability to change body orientation), unlike SmartPoser. 
IMUPoser [32] did not report median error, but achieved a combined 
real-time mean error of 21.6 cm for all arm joints and 26.9 cm for 
just the wrist. MUSE [41] only estimated position at the wrist for 5 
participants and achieved a real-time (10 Hz on a desktop computer) 
median error of 13.0 cm for motions when the body moves around. 
Compared to these works, our system achieved a real-time (25 Hz) 
median error of 11.0 cm for the shoulder and wrist, and 13.3 cm for 
just the wrist. 

6 EXAMPLE USES 
Arm pose tracking (and body pose more broadly) has been well-
motivated in prior work. Our system does not enable any new 
applications per se, but rather makes them more practical — able to 
run on of-the-shelf consumer hardware many people already own. 
For this reason, we do not re-implement any application demos, 
and instead point to the literature for motivating use cases. Please 
see our Video Figure for real-time demos. 

Fitness - Arms are involved in many exercises, and thus track-
ing the arms has obvious and immediate utility for ftness-oriented 
applications. The most straightforward are applications that auto-
matically track rep counts for lifting free weights, jumping jacks, 
jump rope, and similar activities. One could also imagine a smart-
watch assistant verbally guiding a user through a tai chi routine, 
automatically advancing steps. It may even be possible to track 
exercise form for personalized feedback; for example, proper exten-
sion of the arm when hitting a punching bag or form when shooting 
a basketball. 

Rehabilitation - Tracking of the arms could also prove useful 
in rehabilitation (e.g., rotor cuf injuries). For example, continuous 
background tracking could supplement periodic sessions with phys-
ical and occupational therapists by monitoring arm metrics such as 
total motion, duration lifted, maximum extension, and maximum 
height reached. It could even be that appointments are automati-
cally scheduled if there is limited progress or performance loss in a 

given metric. Alternatively, instead of passive, background moni-
toring, arm tracking could be employed in interactive rehabilitation 
applications. For example, an app could guide users through a series 
of balance exercises or reaching tasks. Such apps could not only 
automatically advance steps, but provide instructive feedback and 
encouragement. 

Life Logging - Arm tracking could allow for new types of ac-
tivities to be automatically tracked for life logging purposes. For 
example, it might be possible to track cigarette consumption (re-
peatedly raising one’s hands to the mouth with a particular cadence) 
as part of a smoking cessation efort. Likewise, detecting periods of 
food consumption may also be possible for dieting apps. It may also 
be possible to log domestic activities, such as cooking, cleaning, 
vacuuming, folding clothes, and putting away dishes. 

Occupational Safety & Training - Many forms of manual la-
bor employ the hands, such as carrying boxes, stacking groceries, 
picking vegetables, driving a truck, laying bricks, mowing lawns, 
painting a house, cleaning windows, etc., which could be tracked to 
ensure workers are not fatigued, exploited or injured, e.g., Repeti-
tive Strain Injury (RSI) [14], Hand-Arm Vibration Syndrome (HAVS) 
[43]. It may even be possible to detect improper handling of power 
tools or heavy equipment to improve site safety. Training on how 
to properly handle a tool could also happen via a companion smart-
watch app. 

Gaming - The commercial success of titles like Nintendo Wii 
Sports (the fourth best-selling video game of all time [52]) and 
XBox’s Dance Central franchise ushered in a new era of more 
physically-oriented games. While some mobile games have taken 
advantage of inertial or spatial data, none have leveraged arm pose 
to date. In particular, this could be an interesting opportunity to 
make smartwatch games larger and more interesting than their 
diminutive screens might otherwise allow. For instance, users could 
practice their golf swings or frisbee throws, with the watch report-
ing on achieved range and form quality. While we only consid-
ered arm pose tracking with the phone stored in the pocket, our 
technique should also extend to a phone held in the hand (with a 
diferent machine learning model). This would allow for gaming 
experiences with coordinated graphics. More specifcally, the user 
would look at a game running on the phone held in one hand, with 
the other hand free to perform game actions, such as throwing a 
ball or fghting with a sword. 

Context-Aware Interfaces & Assistants - Devices that are 
context-aware can automatically summon relevant interfaces and 
information to augment a user’s activity. Arm pose is a useful piece 
of information that could improve the accuracy and breadth of 
prior context sensing work (using e.g., environmental sounds [22], 
bioacoustics [24], movement data [23]). For instance, arm pose 
tracking could help disambiguate if a user is driving an automobile 
vs. being a passenger. As discussed in the above subsections on 
Life Logging and Occupational Safety and Training, there is a long 
tail of arm-centric activities that could be automatically detected, 
which could launch context-aware functionality. 

7 OPEN SOURCE 
To enable others to build upon our system, we have made 
our dataset, architecture, and trained model freely available at 
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https://github.com/FIGLAB/SmartPoser, with the gracious permis-
sion of our participants. 

8 LIMITATIONS & FUTURE WORK 
We believe our proof-of-concept implementation demonstrates the 
feasibility of our method, but there are nevertheless limitations of 
note. First among these limitations is that our current work only 
considers the case when the phone is stored in a front pocket, a 
common but not ubiquitous placement [17, 35]. In general, our 
pipeline should scale to other pocket locations, including rear pants 
pockets, and potentially even cycling jersey pockets and fanny 
packs. However, when the phone is taken out and held in the hand, 
and can exist in many possible positions with respect to the body, a 
third spatial reference would be required (potentially head position 
captured via the phone’s user-facing camera or earbuds with UWB). 
There already exists work that can automatically detect pocket 
vs. hand phone placement [13, 51], which could toggle between 
diferent models. 

Another piece of information we need is which pocket a user 
typically stores their phone and which wrist the user wears a watch, 
which could be captured during a one-time setup wizard. Even with 
all this data, the user still needs to perform a calibration procedure, 
which is a limitation of our current implementation. This process 
is described in the Evaluation section, but briefy here, participants 
in our study had to hold the devices near each other, then assume 
a T-pose with their arm to orient the IMU reference frames (e.g. to 
ofset how the phone is placed rotationally in the pocket). While 
inconvenient to perform once, we found the system was able to 
maintain its calibration for an extended period of time. We note 
the T-pose used is not special and could be replaced by a pose 
users more naturally perform, such as arm by side (potentially auto-
detected using UWB distance). If the calibration process could be 
condensed to a single gesture, such as holding the arms by the 
side of the body, we imagine there are many contexts in which it 
would be acceptable to do this once at the beginning of an activity, 
such as starting a workout or a rehab session. This is one aspect 
where the enhanced tracking mode for the iOS UWB API mentioned 
in the Implementation section could be particularly useful. This 
mode provides both distance and 3D angles between the phone and 
watch. Thus, if the watch was held in the phone’s FoV cone, the 
phone would know its absolute position relative to the watch and 
could use this to use this data to calibrate the IMU reference frames 
automatically. 

One additional issue is that many people do not carry their phone 
in their pocket at all [17, 35]. Feminine clothing lacking functional 
pockets [45] is a prominent example. People may opt to carry their 
phone in a bag or purse. Tracking watch position with a phone 
in a bag is a more challenging problem than a phone in a pocket 
because, while there is variation in pocket design, the phone is 
located in the same area on the body in the majority of cases. This 
is not true of bags where the space of possible phone locations is 
much larger. Since the phone could move inside bags, we do not 
expect SmartPoser to work well in such situations. However, as 
a solution, instead of using a phone, our system could generalize 
to other devices that are worn in static locations and may become 
UWB-enabled in the future, such as smart glasses or earbuds. 

9 CONCLUSION 
We have presented SmartPoser, a system that enables 3D arm pose 
tracking using an of-the-shelf smartphone and smartwatch in their 
normally-worn positions. In our approach, we build upon a state-
of-the-art bidirectional LSTM model for arm pose prediction and 
fused more traditional inertial data with new UWB time-of-fight 
range measurements between the two devices. Independent of using 
commodity devices, this technique is novel as UWB ranging has 
never been used to augment IMU data in a wearable pose-tracking 
system before. Through a user study involving real-world activities 
and gross arm motions, our approach yielded a median positional 
error of 11.0 cm for the wrist and elbow joints, with no user data 
in the training set. This is a level of tracking fdelity that has only 
been achieved in the past through full-body instrumentation with 
IMUs or UWB-instrumented environments. Overall, by achieving 
this result in this consumer form factor, we believe SmartPoser 
provides the most realistic pathway to date for arm-based tracking 
and interactions to be adopted for widespread use. 
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