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Figure 1: DiscoBand is a smartwatch strap (A-C) featuring sixteen ultra-small, multi-zone depth sensors (closeup of two sensors 
in B) looking outwards and towards the hands (green and red frustums in D), which capture a fsheye point cloud (E). Many 
interactive uses are possible, including arm and hand pose tracking. 

ABSTRACT 
Real-time tracking of a user’s hands, arms and environment is valu-
able in a wide variety of HCI applications, from context awareness 
to virtual reality. Rather than rely on fxed and external tracking 
infrastructure, the most fexible and consumer-friendly approaches 
are mobile, self-contained, and compatible with popular device form 
factors (e.g., smartwatches). In this vein, we contribute DiscoBand, 
a thin sensing strap not exceeding 1 cm in thickness. Sensors oper-
ating so close to the skin inherently face issues with occlusion. To 
help overcome this, our strap uses eight distributed depth sensors 
imaging the hand from diferent viewpoints, creating a sparse 3D 
point cloud. An additional eight depth sensors image outwards from 
the band to track the user’s body and surroundings. In addition to 
evaluating arm and hand pose tracking, we also describe a series of 
supplemental applications powered by our band’s data, including 
held object recognition and environment mapping. 
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1 INTRODUCTION 
Hands are the chief appendage with which humans manipulate the 
world around them, and for this reason, digitization of the hands for 
use in interactive computing systems has been sought after for half 
a century [10, 77]. Applications vary tremendously, including smart 
environments with hand tracking [5], sign language recognition 
[57], gesture sensing smartwatches [11, 17, 25, 28, 75], and whole-
hand replication in virtual reality for object manipulation [30]. 

Approaches generally fall into one of three categories. First, we 
can instrument both the user and the environment, for example 
with optical [64], acoustic [46], magnetic [45, 47] or other markers 
worn by the user and sensed by external sensors. Second, it is 
possible to instrument only the environment, for example with 
cameras and use computer vision to track a user’s body pose [6]. 
Finally, we can instrument only the user, for example with body-
worn IMUs [69], cameras [54], and many other types of active and 
passive devices (which we review later). The latter category has 
the signifcant beneft of being mobile (i.e., self-contained and not 
limited to a specially-instrumented room), and generally encounters 
less occlusion from objects in the environment (e.g., furniture) and 
the user themselves, depending on the instrumentation point. 

The wrist is a particularly popular instrumentation point from 
which to sense the hands for three key reasons. First and foremost, 
it is a common place to wear jewelry, watches, and other bands. 
Second, it is a highly practical location to afx a small device to 
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the body [16]. And third, wrists are proximate to a user’s hands, 
ofering the potential for superior data capture. For these same 
reasons, we too focus on the wrist location. Also similar to prior 
work, we employ optical sensors to capture the hand pose. However, 
as we will discuss, many prior systems employing such sensors 
have had to elevate components centimeters above the skin in 
order to achieve reliable line-of-sight, which results in form factors 
less amenable for consumer adoption. Additionally, techniques 
using cameras tend to elevate privacy concerns (unless otherwise 
noted, when we discuss "cameras" in regards to related work, we 
are referring to commonly-used, high-resolution, RGB or infrared 
cameras). 

In response, we set out to create a sensor band that is comparable 
to a smartwatch strap: thin and self contained. For this, we use low-
resolution (8×8 pixels), ultra-small (4.9×2.5×1.6 mm) depth cameras. 
To mitigate natural occlusion (e.g., fngers blocking line-of-sight 
to other features), we use eight sensors distributed around the 
periphery of the wrist (Figure 1, B & D, red frustums). When one 
view is occluded, the others are generally not, and in this manner 
they can work together to composite a live 3D point cloud (Figure 
1E, red points) and resolve a probable hand pose. 

Our band also features eight additional depth sensors facing 
outwards (i.e., normal to the skin; Figure 1B), which we use to 
track the arm and upper body (Figures 1, D & E, green frustums 
and points). Taken together, these sixteen depth cameras capture 
a fsheye-like 1024 point cloud (Figure 1E), the rays of which are 
reminiscent of a disco ball refecting light, and so we dubbed our 
prototype DiscoBand. The sensors we use have a range of 4 m, 
allowing us to also capture the proximate environment, opening 
other application areas discussed later. 

Overall, DiscoBand ofers a unique combination of features and 
properties that diferentiate it from prior work. First and foremost, 
our band is thin, and could be plausibly integrated into future smart-
watches. Second, our multi-view approach is inherently more robust 
to occlusion than single-view methods. Third, our low-resolution 
depth data is more privacy preserving than conventional camera-
based wrist systems. Finally, our band’s unique design and data 
opens entirely new capabilities not previously demonstrated with 
wrist-worn setups, including the ability to estimate user upper body 
pose, detect held objects, and scan the environment for obstacles 
and contextual clues. In this paper, we document the implementa-
tion of DiscoBand and diferent example applications we explored, 
as well as report results from a series of user studies that underscore 
the potential of our approach. 

2 RELATED WORK 
We now review three key areas of related work. First, we describe 
the many disparate application domains that can beneft from hand 
and arm pose tracking. We then move to a brief survey of hand and 
arm tracking systems worn on the wrist, but which sense the hands 
and body using indirect means. We conclude with a discussion of 
systems closest to our own: wrist-borne systems that use sensors to 
directly measure the physical confguration of the hands and arms. 

2.1 Applications of Hand & Arm Pose Tracking 
Gesture and pose tracking of both the hands and arms have been 
long standing goals in the feld of Human-Computer Interaction 
(HCI). At a basic level, gesture and pose tracking can be used to 
augment existing devices, such as smartphones, with alternate 
input channels for interaction. Examples of this include zooming 
by pinching the index fnger and thumb together [70], dismissing 
notifcations with a fick of the wrist [3], and sign language input 
[57]. Recognition of specifc key poses is particularly important in 
domains such as eating monitoring and medication adherence in 
healthcare [12, 48, 76], form correction in ftness [52, 60], avatar 
representation in virtual reality [9, 50], and remote control of robots 
[65]. Whole-arm pose tracking has also been explored for in-air 
gestures for handwriting [74] and mapping symbolic body language 
to emojis [31]. 

2.2 Wrist-Borne Indirect Sensing 
One approach to gesture tracking is through indirect sensing of 
measurable features that indicate the presence of a pose/gesture 
without ever imaging the shape of the body itself. Among the many 
methods in the literature, we were most interested in those that 
involved sensors worn on the arm or wrist, as this was most similar 
to our setup. 

One of the most popular methods for indirect hand gesture sens-
ing is electromyography (EMG), which measures the electrical activ-
ity of muscle tissue. Many systems have implemented this technique 
because it is relatively non-invasive [29, 32, 39]. Similar techniques 
that also measure muscle contraction include using air pressure 
bladders afxed to the forearm [28] and resistive strain sensors on 
the wrist or back of hand [11, 36]. 

Another common technique for indirect hand sensing is tomogra-
phy, which tracks pose confguration by emitting excitation signals 
into the forearm and measuring how the received signal change 
based on shifts in the internal composition of the arm. There are 
many diferent ways to perform tomography, some involving in-
frared light [41, 44] or ultrasound [27, 42], while others use pair-
wise electrical impedance measurements from electrodes surround-
ing the arm [75]. Less common indirect hand-sensing techniques 
include acoustic measurements (both active [43, 55] and passive 
methods [21]), capacitive sensing [49, 63], and measuring skin de-
formations on the back of the hand [61]. 

The last major indirect technique – detecting movement with 
inertial measurement units (IMUs) – is used for both hand tracking 
[67, 71] and whole-arm tracking [4, 14, 38, 53]. Advantages of IMUs 
include their ability to detect gestures beyond just the hand and 
their ubiquity in many of the smart devices users already own. 
It is worth mentioning that historically IMUs have been the only 
major technique that has been used for tracking arm pose using 
wrist-borne sensors. 

2.3 Wrist-Borne Direct Sensing 
Most similar to the sensing technique that DiscoBand employs are 
on-wrist systems that directly image the physical form of the hand 
or arm they are attempting to track. Within this category there 
are many diferent imaging sensors used. In past years, the two 
most popular methods have been 1) arrays of IR emitters/detectors 
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Figure 2: A high-level overview of wrist-worn, hand tracking methods. We include reference system(s) for each method, which 
we then evaluate across a range of desirable qualities. Orange tildes are used when the capability is system dependent (and less 
innate to the method). *Capable of low power operation using the next generation of sensors [59]. 

positioned around the wrist that capture a single depth value per 
detector [17, 18] and 2) single cameras mounted above the wrist 
of many varieties, including RGB [1, 8, 68], depth [56], thermal 
[72], and infrared [30, 66, 73]. Although not technically a wrist-
borne system, ThumbTrak uses IR rangefnders in an ring array to 
capture fnger micro-gestures [62]. Another prominent category 
of sensing is ultrasonic, ranging from single-sensor measurements 
[37] to complex beamforming arrays [26]. 

While often having superior SNR due to direct tracking of the 
hand, a commonality of the above systems is the need to operate 
signifcantly above the surface of the arm to achieve sufcient line of 
sight to e.g., the fngers [1, 30, 56]. Even still, if the wrist bends away 
from the sensor, most of these systems will lose tracking due to 
occlusion [68, 73]. One of the diferentiating features of DiscoBand 
is that it aims to mitigate this occlusion problem by capturing 
depth maps from many overlapping view points around the wrist. 
This multi-view approach is underexplored, with the exception 
of FingerTrak [25], a hand tracking system using four thermal 
cameras positioned around the wrist. FingerTrak’s thermal cameras 
are low resolution (32×24 pixels), and thus, like DiscoBand, the 
system more privacy preserving relative to those employing high-
resolution cameras. Of course, the two systems are quite diferent 
in terms of number of sensors used (and thus views captured; 4 vs. 
16) and the type of sensor data captured (temperature vs. distance). 

Finally, the most related systems from a sensing standpoint are 
WristWhirl [17] and RotoWrist [51], which track continuous wrist 
angle using small infrared range fnders (depth sensors). The latter 
sensors are very similar in style and operation to the sensors we 
use, but are not multi-zone. In other words, WristWhirl’s twelve 
and RotoWrist’s eight sensors provide exactly that many distance 
measurements, where as DiscoBand’s sixteen sensors provide 1024 
points in a 3D volume. Moreover, the specifc sensor we use has a 
larger feld of view, allowing DiscoBand to capture an aggregated 
fsheye-like point cloud. These improvements allow us to consider 
new and interesting use cases, discussed later. 

Beyond IMUs, there has been relatively little work on wrist-borne 
arm tracking. Notable among non-IMU methods is work by Hori 
et al. [24], which used a wrist-mounted 360° camera to estimate 
full body pose. With a resolution of 4992×2496, there are obvious 
privacy implications, and the apparatus itself is approximately 10 
cm in height. Even still, there is signifcant self occlusion, which has 
been an issue for other worn, single-camera, pose tracking systems. 
DiscoBand contributes a new method for arm pose tracking with is 
comparatively practical and compact. 

3 DISCOBAND IMPLEMENTATION 
DiscoBand is a combination of hardware and software contribu-
tions working together to enable a series of use cases, which we 
subsequently evaluate. In this section, we detail the implementation 
of these components. 

3.1 Hardware 
Our early hardware prototypes consisted of a series of linked rigid 
PCBs (example prototypes shown in Figure 3, top row), but these 
were awkward to wear and increased the height from the skin, one 
of the design parameters we sought to minimize. Our fnal design 
(Figures 1 and 4) features two fexible PCB "wings" that permit our 
prototype to be closely wrapped around a user’s wrist, emulating 
a smartwatch strap. Figure 3 (bottom row) ofers a mockup of a 
commercial implementation using a fexible PCB over-molded in 
silicone. 

The most notable component we use is STMicroelectronics’ 
VL53L5CX time-of-fight (ToF) ranging sensor (Figure 1B, green 
and red highlights). This diminutive surface-mount component is 
able to capture an 8×8 depth image at 15 FPS, up to a range of 4 m. It 
uses a 940 nm class 1 laser, which is eye safe. Eight of these sensors 
face outwards from our band (i.e., normal to the skin), where they 
can image the wearer’s body and environment. Each sensor has 
a 45° horizontal feld of view, so that together, the eight sensors 
provide a 360° point cloud (Figure 1D, green frustums). A second 

3 



UIST ’22, October 29-November 2, 2022, Bend, OR, USA DeVrio, et al. 

Figure 3: Two early DiscoBand prototypes made from rigid 
PCBs (A & B). A physical mockup of how DiscoBand could 
appear in a commercial form factor (C & D). 

Figure 4: A photo and PCB layout of our fnal DiscoBand 
protoype, which can also be seen in Figures 1, 5-8, 13-16. 

set of eight sensors faces towards the user’s hand (i.e., parallel to 
the skin), sitting on fexible PCB tabs that bend upwards. These 
sensors have overlapping feld of views (Figure 1D, red frustums), 
but because they operate from diferent vantage points, they are 
able to image parts of the hand that might otherwise be occluded 
in other sensor views. 

All sixteen VL53L5CX sensors are controlled by a STM32L431 
microcontroller, which sits on a small rigid PCB to which our two 
fexible PCBs attach. We use all three of the chip’s independent 
I2C buses to maximize sensor throughput. The rigid board also 
features a BNO055 9-DOF IMU (three axis inertial data, absolute 
orientation, and magnetometer), 64 kB FRAM, and analog power 
circuitry for the sensors. Using a modular serial port, our sensor 
band can run over USB (for power and data) or be battery powered 
and communicate over Bluetooth. We discuss power consumption 
in Section 8. 

3.2 Firmware 
Our frmware handles three main responsibilities: interfacing with 
the depth sensors, packaging data frames, and transmitting them 
from the watch to a computer for processing. We note that in the 

Figure 5: DiscoBand’s depth sensors capture diferent views 
of the hand, which can be composited into a unifed 3D point 
cloud. In this example sequence, the user uncurls their fn-
gers, which is apparent in the point cloud data. 

future, all processing could occur on the watch itself, as the lat-
est generation of smartwatches contain very capable processors 
and machine learning hardware accelerators. To maximize our 
framerate, we utilize all three I2C busses on the STM32L431 micro-
controller, and also use direct memory access (DMA) to free the 
processor for other parallel tasks. One bus is devoted to each wing’s 
array of hand-facing depth sensors, while the third bus commu-
nicates with all of the outward-facing sensors. We found that the 
VL53L5CX sensors do not signifcantly interfere with one another 
even when operating simultaneously, and we can further select 
sensor pairs that are on opposite sides of the body to further reduce 
any interference. This strategy allows us to overlap as many as 
three sensor read requests at once (two hand-facing sensors and 
one outward-facing sensor). Rather than wait for all sensors to be 
read before transmitting a single data frame, we send sensor values 
piecemeal as they become available, which helps to reduce latency. 
As we have half as many sensors on our two hand-facing sensor 
buses, we can receive all hand-facing depth maps at 7.3 FPS. For 
our single bus of eight outward-facing sensors, our band runs at 
3.7 FPS, and this is also the frequency at which we send 9-DOF 
IMU data. This data is transmitted over serial via USB or Bluetooth. 
We note that the depth sensors we use can go up to 15 Hz, and 
that our prototype’s slower framerate is primarily a consequence 
of using a single low-cost microcontroller and sending data back to 
a computer. If a superior processor was used, enabling on-device 
compute, both of these bottlenecks could be eliminated. 

3.3 Compositing Multi-View Point Clouds 
Although our fexible PCBs can deform, the relative geometry of the 
sixteen depth sensors is largely constrained. If we take into account 
a user’s wrist circumference (which could be entered once during 
a setup wizard), we can make even tighter estimates. We use this 
geometry to composite all sensor data into a unifed point cloud, 
as shown in Figure 5. We can orient this point cloud in three ways, 
useful for diferent applications. First, and most simple, is to keep 
the point cloud aligned to the wrist’s coordinate system (essentially 
the band’s frst person view). Second, we can rotate it to align with 
the world using the BNO055’s gravity and magnetic north vectors. 
Finally, we can align it to the wearer’s body, using our upper body 
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Figure 6: Four example arm poses (top row) alongside real-
time output of DiscoBand’s arm pose pipeline (bottom row). 

tracking described later. At this stage, we also perform basic signal 
fltering to reject outlier or intermittent noisy depth values, which 
improves the robustness of our downstream example applications. 

At present, this multi-view compositing process occurs on a 
laptop using a custom application we wrote in Python. This app 
also ofers a real-time visualization of the unifed point cloud, with 
the ability to toggle on and of individual sensors, which was helpful 
for debugging and exploring possible use cases. However, we note 
that our compositing process is not computationally expensive, and 
could occur on the smartwatch in the future, as could the machine 
learning components described in the next section. 

4 EXAMPLE USES & IMPLEMENTATIONS 
Our primary motivation for creating DiscoBand was to enable arm 
and hand pose tracking. Our band’s design refects this, with two 
rings of depth sensors explicitly targeted for these applications. For 
these primary use cases, we built functional, real-time implemen-
tations, which we evaluate in a later user study. However, during 
our development process (and particularly after we were able to 
visualize the multi-view point clouds generated by our band), many 
additional uses came to light. These application areas, explored but 
not rigorously implemented, are described in Section 7. 

4.1 Arm Pose Tracking 
Tracking a user’s arm relative to their upper body has applica-
tions in context sensing (e.g., activity detection), ftness (e.g., rep 
counting), rehabilitation (e.g., range of motion tracking), and other 
domains. As discussed in Related Work, the most common way this 
data is captured today is with external sensors, such as cameras 
placed in a room. There are comparatively few self-contained, worn 
systems that track the arm and upper body in the literature, with the 
most popular method being worn IMUs requiring per-worn-session 
calibration. 

For this application, DiscoBand uses data from its eight outward-
facing depth sensors. The raw point cloud data is geometrically 
complex, and thus we sought an efcient way to reduce dimension-
ality. For this, we cluster the point cloud using DBSCAN [15] (min 
cluster size 16, max inter-point distance of 75 mm) and identify the 
closest large cluster (generally the user’s torso). We then compute 
the phi, theta, and distance values as machine learning features. 

Figure 7: Left: photo of example hand pose. Right three: the 
three virtual view depth maps our pipeline creates as features 
for hand pose estimation. 

We also include the absolute orientation of the wrist (three Euler 
angles) provided by our band’s IMU. 

To capture ground truth arm pose for training, we use an RGB 
webcam and BlazePose [2] via MediaPipe Pose [20], which provides 
3D estimates for 33 body keypoints. Of these, we save six keypoints: 
the left wrist, left elbow, left shoulder, right shoulder, left hip and 
right hip. In cases where a user wears a smartwatch on their right 
hand, we would capture right wrist and right elbow instead. We 
use SciPy’s ExtraTreesRegressor (default parameters) to predict the 
aforementioned six upper body points, with the midpoint between 
the two hip joints as the root node. Example tracking is shown in 
Figure 6 and our Video Figure. 

4.2 Hand Pose Tracking 
More widely explored in the literature is hand pose tracking, which 
has immediate applications in VR input (e.g., grasping objects), 
free-space interactions (e.g., gestural control of IoT devices), and 
activity detection (e.g., carpal tunnel mitigation). We note that 
data capture inevitably sufers from heavy hand self-occlusion, and 
when rendered as a point cloud (examples in Figure 5), the data 
more resembles that of a 3D convex hull. Nonetheless, the external 
geometry that is captured is indicative of many diferent hand poses. 

As with arm pose tracking, we featurize the point cloud to pro-
vide a lower-dimensional representation that is both descriptive 
and stable. More specifcally, we create three synthetic 14×14 depth 
maps looking at the hand from diferent virtual viewpoints: looking 

Figure 8: Four stills of example hand poses (top row) along-
side renders of the 21 hand pose joints predicted by our model 
(bottom row). 
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Figure 9: The ten terminal arm poses used in our study. Top row: Reference pose images. Bottom row: point cloud of body as 
seen by the eight outward-facing sensors. 

Figure 10: The ten terminal hand poses used in our study. Top row: Reference pose images. Bottom row: palm-normal-view 
synthetic depth maps (see Section 4.2 and Figure 7) of the hand as captured by the eight hand-facing sensors. 

down the palm normal, along the arm’s axis, and a side view of the 
hand (pinky fnger closest to virtual camera). An example of these 
three views for a thumbs-up pose can be seen in Figure 7. 

For ground truth data capture, we use a webcam and MediaPipe 
Hands [19, 40], which provides 3D coordinates for 21 hand key-
points. In pilot testing, we found this software ofered better track-
ing accuracy and stability than a Leap Motion Controller, which is 
often used in such experiments. Our model (SciPy ExtraTreesRe-
gressor, default parameters) predicts MediaPipe’s 21 hand keypoints. 
Example hand pose tracking can be seen in Figure 8. 

5 EVALUATION PROCEDURE 
To evaluate the efcacy of our multi-view depth sensing approach, 
we recruited ten participants (mean age 25, all right-handed) for a 
60 minute study, which paid $20 in compensation. The study was 
conducted in a standard ofce space with large pieces of furniture 
nearby and next to a set of large windows letting in outside light. 
After a brief orientation, participants were ftted with DiscoBand, 
proceeding once they felt comfortable. We then recorded six body 
measurements: shoulder width, arm length, wrist diameter, palm 
width, band to wrist crease distance, and band to middle fnger tip 
distance. These values are passed to our machine learning models 
as user descriptors, and also used to normalize our data in analysis. 

Our procedure was divided into two parts, starting with an arm 
pose study. Lacking a common set of arm poses from the literature 

to work with, we devised our own set of ten poses, exemplifying a 
variety of arm movements. In designing our arm pose set, we aimed 
to capture 1) a variety of joint movements (shoulder/elbow) and 2) 
joint orientations, as well as poses that 3) provided varied spatial 
endpoints (i.e., above/below the shoulders, as well as in-front/to-
the-side of the body). Importantly, we were not just considering 
the poses as static endpoints, but also considering variation in the 
dynamic movements between poses. Pictures of our fnal pose set 
can be seen in Figure 9. 

These poses were visually requested using a computer monitor. 
Participants were instructed to slowly move their body to match 
and then hold that pose for a few seconds, after which the monitor 
showed the next arm pose to be performed. One round of data 
collection consisted of all ten arm poses in a random order. Ten 
rounds of data were collected in this manner, which formed one 
session of data. DiscoBand was then removed and participants were 
given a few minutes break. The band was then re-worn and a second 
session of data was collected. 

Importantly, we did not just record data at the terminal arm 
poses, but rather continuously throughout the experiment. This 
provided signifcantly more pose variety (and tracking challenge) 
than a defned pose set. Consider, for instance, all the intermediate 
pose states between the salute pose and hands-on-hips. In essence, 
each round of data capture can be thought of not as ten random 
pose trials, but rather as nine paired pose transitions (90 possible 
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pairwise combinations). For ground truth 3D body pose, we used a 
webcam (1 m away) and BlazePose [2] running on MediaPipe Pose 
[20], which provides 33 body keypoints at 30 FPS. Each time our 
band transmits a frame of data, it is saved alongside the most recent 
BlazePose output. Across our ten participants, this data collection 
procedure yielded 50,000 body pose instances. 

Next, our study moved to hand poses. This procedure was similar 
to arm pose, this time with a ten-gesture hand pose set drawn from 
the literature [26, 28, 75] (Figure 10). As before, a computer monitor 
requested the hand pose, and participants slowly moved their hands 
to match, holding the pose for a few seconds, before continuing to 
the next trial. One round of data collection consisted of all ten hand 
poses requested in a random order, and ten rounds were collected 
per participant to complete one session. As before, two sessions of 
data collection were completed, with a break in between when the 
band was removed. To capture ground truth hand pose, we placed 
a webcam 25 cm below the participant’s hands, looking upwards. 
We use MediaPipe Hands [19, 40] to estimate the 3D hand pose 
(21 keypoints) which, like before, is recorded in each frame of data. 
Across all ten participants, this collection procedure yielded 100,000 
hand pose instances. 

Similar to arm pose, we recorded the continuous motions be-
tween hand poses and not just the terminal poses. With this process, 
we were able to collect data and eventually track hand movements 
down to the granularity of individual fngers. Tracking of individual 
fnger movements specifcally occurred during the evaluation when 
performing transitions such as Fist → Thumbs up and Relax → OK 
and can also be seen in our Video Figure. 

6 RESULTS & DISCUSSION 
For our evaluation, we were interested in investigating DiscoBand’s 
performance in predicting arm and hand pose when moving con-
tinuously between poses in our gesture sets. In addition, we also 
wished to quantify performance stability for a single user across 
multiple worn sessions, and across multiple users. To accomplish 
this, we compared our regression model results against the BlazePose 
ground truth in three separate analyses of within-session, cross-
session, and cross-user performance. 

6.1 Within-Session Performance 
We conducted an investigation of within-user continuous joint error 
to simulate the performance of the system when it is calibrated 
to each user when frst worn. We train/test our model using a 
modifed k-fold cross validation procedure (� = 5) whereby we 
divide the data in the two session into 5 folds each, and then select 
one fold from each session to concatenate into a test data set and 
concatenate the remaining 8 folds into a training set. Of note is 
that all folds were divided at gesture transitions and data was not 
shufed, ensuring there was never training and testing on data 
from the same instance of a performed gesture. We averaged the 
results from all 25 fold combinations to estimate within-session 
performance for a single user, and repeated this process for all users. 
Combining the per-user results, we then calculated mean per-joint 
position error (MPJPE) across all participants, which is shown along 
with standard error bars in Figure 12 for arm pose tracking and 
Figure 11 for hand pose tracking (dark blue bars). 

For within-session arm tracking, we found a MPJPE of 8.83 cm 
(SD=2.83 cm) for the arm joints (wrist and elbow) and 5.88 cm 
(SD=2.75 cm) for all upper-body points. The maximum joint error 
was 11.05 cm for the wrist, which is expected given that it has 
the greatest range of motion and is furthest from the root node. 
When viewing arm pose prediction outputs, the most common 
observation was that the model would get the general arm gesture 
correct, and any error often arose from the fne pitch of the elbow 
or shoulder joint bends. 

For within-session hand tracking, we found a MPJPE of 11.69 
mm (SD=2.37 mm) and a maximum joint error of 21.84 mm (tip of 
the middle fnger). Joint error decreases for each fnger joint moving 
inwards from the distal end, as one would expect. Error was lowest 
at the middle fnger metacarpal joint, rather than the wrist joint, 
because when the hand pitches MediaPipe returns keypoints rotated 
about a root close to that joint rather than the wrist, giving it the 
smallest range of motion. 

6.2 Across-Session Performance 
In addition to testing performance in single worn sessions, we also 
wished to test reproducibility, namely the ability to have stable 
performance each time the user puts on the band without the need 
for retraining. To test across-session performance, we evaluated 
our model with a simple leave-one-session-out cross validation, 
whereby we frst train on data from session one and test on session 
two, and vice versa, averaging the results to obtain performance 
for a single user. This process was repeated for all users and all 
per-users results were combined to calculate MPJPE as shown in 
Figure 12 for arm pose tracking and Figure 11 for hand pose tracking 
(orange bars). 

For cross-session arm tracking, we found a MPJPE of 12.16 cm 
(SD=4.32 cm) for the arm joints (wrist and elbow) and 7.40 cm 
(SD=3.28 cm) for all upper-body points. For cross-session hand 
tracking, we found a MPJPE of 17.87 mm (SD=2.89 mm). In both 
studies, but especially for hand tracking, there was a noticeable 
increase in error when testing cross-session performance. This is 
almost certainly due to the band varying slightly in worn position 
across sessions, and given the model is only trained on data from one 
session (i.e., one location), it cannot extrapolate to other locations. 
It seems likely that more varied training data would be of great 
beneft. For arm pose tracking, the efect is less severe as surfaces 
are both farther away and more coarse. Finally, we note that cross-
session robustness is often a challenge for worn sensor systems, and 
DiscoBand is no exception. As one point of reference, FingerTrak 
[25] saw a 127% increase in error when moving from within-session 
to cross-session testing (vs. DiscoBand’s 53% increase in error). 

6.3 Cross-User Performance 
Beyond testing performance for individual users with custom mod-
els, we also wished to evaluate the ability of our system to be trained 
once (i.e., model fashed at the factory) and work for all users. To in-
vestigate this, we performed a leave-one-user-out cross validation, 
where data from nine participants was used for training and the 
tenth for testing. This process was repeated for all possible combi-
nations of participants and the results were averaged to calculate 
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Figure 11: Hand pose study per-joint position error averaged across all participants for 21 hand keypoints. Our lowest mean 
per-joint position error was 11.7 mm for within-session. 

MPJPE. The results are shown in Figure 12 for arm pose tracking 
and Figure 11 for hand pose tracking (grey bars). 

For cross-user arm tracking, we found a MPJPE of 12.42 cm 
(SD=2.97) for the arm joints (wrist and elbow), and 8.24 cm (SD=2.96) 
for all upper-body points. For cross-session hand tracking, we found 
a MPJPE of 19.98 mm (SD=3.29). We were surprised to fnd that 
for the wrist joint, the most important for arm pose tracking, there 
was almost no increase in error moving from cross-session to cross-
user. This is in contrast to other approaches (e.g., EIT, tomography) 
which often see signifcant drops in performance across multiple 
users [27, 75]. 

7 FUTURE USE CASES 
As discussed in Section 4, our DiscoBand implementation focused 
on two core use cases: arm and hand pose tracking. However, over 
the course of more than a year of development, we identifed several 
other interesting use cases. Although only brief explorations with 
basic implementations, we believe they convey how DiscoBand is 
an enabling technology with many interesting uses. 

7.1 Bimanual Activities 
While prior work has shown that smartwatches can be used to 
detect activities performed with the hand (see e.g., [33–35]), they 
are inherently limited by the fact that users wear one smartwatch 
on one arm. Worse still, the most common location to wear a smart-
watch is on the non-dominant hand; if an activity is performed 
with the other (dominant) hand, it is likely impossible to detect. 

In the case of bimanual activities — such as cutting food on a 
plate, steering a car, typing on a keyboard, riding a bicycle, tying 
one’s shoes, or performing jumping jacks — DiscoBand can provide 
useful data. These examples are illustrated in Figure 13 where we 
can see DiscoBand readily captures the other arm using its outward-
facing depth sensors. The resolution is crude at present, permitting 
only arm detection and angle estimation. However, forthcoming 
advances in sensor resolution will greatly enable this use case. We 
speculate that virtual IMU data could be synthesized by tracking 
the opposing arm mass, such that a single smartwatch has inertial 
data for both hands, which would be a huge boon to many context 
sensing applications. 

Figure 12: Arm pose study MPJPE across all participants for 
six upper body keypoints. Within-session accuracy was the 
strongest, with a MPJPE of 8.8 cm for the arm joints (key-
points 0 & 1) and 5.9 cm for all upper-body points. 

Figure 13: In these paired examples, we can see how Dis-
coBand is able to image the other (uninstrumented) arm. For 
illustration, the real point clouds have been rotated to match 
a greyscale reference photo. 
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Figure 14: Example point clouds of various hand-held objects as captured by DiscoBand’s eight hand-facing depth sensors. For 
illustration, the real point clouds have been rotated to match a greyscale reference photo. 

Figure 15: Example single-frame point clouds as the user approaches a laptop to begin work. Green and red point clouds are 
from outward- and hand-facing depth sensors, respectively. In the right two examples, the hand-facing sensors capture the 
geometry of the keyboard and screen of the laptop. 

7.2 Ad Hoc Touch Tracking 
Our band’s hand-facing depth sensors not only capture the hand, 
but also objects and surfaces in front of the hand. These surfaces 
could be opportunistically appropriated for ad hoc touch input [22]. 
To explore this opportunity, we created a functional application 
that can detect touches and basic 2D gestures on ad hoc surfaces. 
To detect everyday planar surfaces (uninstrumented walls, tables, 
countertops, etc.), we run Optimal RANSAC [23] on the point cloud 
(ignoring points further than 50 cm away). This process identifes 
and fts a plane to the point cloud, if one exists. For “click“ detection, 
we extend a ray from the band and test for collision with the ftted 
plane at the tip of the index fnger (a distance we measure per user, 
but which could be captured once in a setup wizard). We note a 
more advanced version of our software would detect a pointing 
gesture using our hand pose pipeline, but we did not combine these 
two processes. Finally, once the user has "clicked" a surface, our 
band tracks in-plane 2D gestures using its IMU (see Video Figure). 

7.3 Held Objects 
Our eight hand-facing depth sensors are not only capable of imaging 
hand pose, but also objects held in the hand. Figure 14 includes 
example point clouds for a cofee cup, water bottle, notebook, dufe 
bag, grocery bag, umbrella and door handle. We threshold depth 
values further than 1 m, as these are unlikely to be an object held 
in the hand. 

The low-resolution nature of our point clouds will naturally 
lead to confusion among objects if only geometry is leveraged for 
classifcation. However, machine learning could utilize two other 
important pieces of information. First is distance the object appears 
from the wrist, and the second is absolute hand orientation. For 

instance, an umbrella is not only distinctive for its large curved 
surface, but also the fact it operates 1 meter away and above the 
user. Arm pose data, which our system excels at, could also prove 
helpful in disambiguating some generic object geometries, such as 
a user bringing a cylinder-like object to their mouth (i.e., a bottled 
beverage). 

7.4 Environments 
While held-object and bimanual activity detection operate in the 
near feld, we can also use DiscoBand to image the far feld for envi-
ronment detection and scanning. As noted previously, our current 
prototype can sense surfaces up to 4 m away. 

Although a single frame of depth data does not typically allow 
for fne-grained geometric details to be resolved, some environ-
ments are distinctive. For example, a car interior is typifed by a 
small enclosed volume, in which the hands operate in front of the 
body. Further, the presence of a vertical surface to the immediate 
left of a user would suggest they are in the driver seat (in countries 
with left-hand drive), which could be a useful contextual clue for a 
smart assistant (e.g., managing cognitive load). Figure 15 ofers an 
example sequence of single-frame depth data, where the geometry 
of a tabletop and then laptop become visible. Even more interesting 
is when multiple point clouds are combined over time to build up 
a fne-grained 3D model of the environment. As a simple demo, 
we used our arm pose tracking (which provides 6-DOF wrist ori-
entation data) to layer multiple point clouds. Figure 16 ofers an 
example scene. Due to the nearly 360-degree nature of our sensing 
frustums, it is also possible to perform scans like this from a vari-
ety of arm poses, not just the one used in Figure 16. We note that 
more advanced multi-frame registration methods (e.g., SLAM [13]) 
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Figure 16: As the user turns, a higher-resolution, multi-frame 
point cloud of the ofce is built up. Note the ajar door to the 
left is captured. 

would provide even better output, an implementation we leave to 
future work. Finally, we also speculate that a detailed model of the 
ground could be captured simply by the arms naturally swinging 
during locomotion, which could have assistive uses for those with 
impaired vision. 

7.5 Body Scanning 
Finally, DiscoBand is also capable of opportunistically scanning the 
user’s body. The arms naturally sway in front and behind the user 
as they move about, providing multiple view points of the body. 
Like environment scanning, the point clouds can be correlated and 
overlaid to build up a 3D scan of the torso. Such a feature could be 
used to detect clothing, such as jackets, or potentially tracked over 
time for ftness and health applications. 

8 LIMITATIONS 
We believe our approach and proof-of-concept implementation 
demonstrates signifcant promise, but there are nonetheless im-
portant limitations worth discussing. Chief among these is the 
outstanding challenge of hand pose estimation in the face of signif-
icant hand self-occlusion. This issue is inherent to all wrist-borne 
direct sensing systems, and severity of the efect only increases as 
the sensors operate ever-closer to the skin. DiscoBand’s multi-view 

approach partially mitigates this issue, and superior depth sensor 
resolution and machine learning models could yield further accu-
racy gains. Further, a multi-modal sensing approach, combining 
multi-view depth sensing with non-line-of-sight methods such as 
EIT [75] and EMG [29, 32], could prove successful as they are robust 
in orthogonal ways [7]. 

Like almost all worn sensing systems, our band achieved its best 
hand pose accuracy when trained and tested using within-worn-
session data (MPJPE of 11.69 mm). This result is not surprising, but 
it is also unrealistic, as consumers cannot be expected to re-calibrate 
their device each time it is worn. When we look at cross-session 
hand pose accuracy (i.e., where the band is removed and later re-
worn), MPJPE increased to 17.87 mm, which is a more realistic 
appraisal of our band’s pose accuracy. Even more challenging for 
the pose model is when it is only trained on data from other people, 
but never on its own user. This simulates "out-of-the-box" accuracy. 
Like most worn systems, across-user accuracy was DiscoBand’s 
worst performing train/test condition. However, we were surprised 
to see that it was competitive with our cross-session performance. 
We suspect this is because the model was trained on more data (nine 
users instead of one), and hypothesize that across-user accuracy 
could improve further with a larger corpus. 

Our lab study also has some limitations, First, it was conducted 
exclusively indoors, as the one-of hardware was tethered and 
reasonably fragile. Although we did not formally test our system 
outdoors, it is expected that IR interference from direct sunlight 
would impact performance (though we note that time-of-fight 
depth sensors can operate in direct sunlight, unlike structured light 
approaches). Second, with regards to the biometric calibration data 
we collected from our participants at the beginning of the study, we 
would hope to eliminate this in the future. Instead of manual input 
of body data, it may be possible to conduct a one-time, automatic 
calibration where hand and arm length could be determined by 
performing known poses. 

We also note that our wrist band is very much a proof-of-concept 
implementation, and several engineering challenges would have to 
be overcome in a consumer version. One issue is cost – our band 
cost roughly $200 to build (as a one-of prototype). While each 
VL53L5CX sensor only costs around $6 USD in large volumes, we 
utilize sixteen of these sensors that drives up the bill of materials. 
Perhaps in very large volumes, economies of scale could reduce the 
price. Alternatively, future iterations of the sensor could increase 
the feld of view and sensor resolution, such that that the number 
of sensors could be halved. 

Power consumption is also a signifcant challenge, especially 
in a wrist-worn device where battery size is constrained. At full 
duty cycle, our present band consumes 3.6 W (which we note is 
lower than comparable systems such as FingerTrak [25]). For this 
reason, we completed much of our development and testing with 
the band tethered to a power source (runtime was 3.7 hours when 
using a 4 Ah LiPo battery). To make our approach compatible with 
mobile device power budgets, the sensing would have to be made 
intermittent, sampling the scene only occasionally. It could wake 
and run at full speed opportunistically, perhaps triggered by an 
application or IMU data (similar to raise-to-wake functionality in 
contemporary smartwatches). Fortunately, the time-of-fight depth 
sensors we employ are seeing continuous improvements. Indeed, 
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the next generation of the sensors has already been announced by 
STMicroelectronics [58, 59] and will consume 50% less power than 
the components we used (while also ofering higher resolution). 

Finally, in this paper, we described seven example uses for Dis-
coBand: arm pose, hand pose, bimanual tracking, ad hoc touch 
tracking, held object detection, environment scanning, and body 
scanning. We believe this long list highlights the generalizability 
of our approach and the long tail of applications it could enable. 
However, our explorations were not exhaustive, and we hope others 
will join us in applying this general approach to new application 
domains, especially those that were not previously possible in a 
mobile context. 

9 CONCLUSION 
We have presented our work on DiscoBand, a novel sensing wrist-
band utilizing a distributed array of ultra-small depth cameras to 
digitize a user’s hand and upper body pose. Our depth sensors also 
image the environment around a user, enabling additional uses 
cases. Our approach allows for a uniquely thin form factor (<1 cm), 
which could permit integration into future worm consumer elec-
tronics. Further, our low-resolution point clouds are much more 
privacy preserving than comparable camera-based systems. In our 
user study, we found that DiscoBand can track the six upper body 
keypoints with a mean joint positional error of 5.88 cm. For hand 
pose, we found a mean joint positional error of 1.70 cm. Overall, 
we believe DiscoBand is a powerful enabling technology, and we 
describe fve additional application areas enabled by our approach 
that we hope to more fully explore in the future. 
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